• Title/Summary/Keyword: Waste form

Search Result 494, Processing Time 0.028 seconds

The Study Concrete Brick Material of Recycle Cement Using (재생시멘트를 이용한 콘크리트벽돌의 물성 연구)

  • Seo Kyung-Ho;Park Cha-Won;Ahn Jae-Cheol;Hee Byeung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.87-90
    • /
    • 2004
  • Serious problems of the environment protection and resource exhaustion are exhibited. due to the increase of the construction materials and activation of the remodeling, recently. Especially, most of the advanced countries. recycling plan for the waste concrete is vigorously progressing. The purpose of this study is making advances in the recycling of waste concrete material for use as recycled aggregate to make secondary concrete product. Using recycled aggregates form demolished concrete, we manufactured cement bricks to experiment overall performance in Korean Standard and feasible performances. On the recycled cement, in the case of cement : aggregate is 1 : 7 is satisfied with KS F 4004 : dimensions, water absorption, compressive strength of quality of a standard. So we concluded that it has great feasibility to apply these products to construction industry.

  • PDF

Study on sintering process of woodceramics from the cashew nutshell waste

  • Kieu, Do Trung Kien;Phan, DinhTuan;Okabe, Toshihiro;Do, Quang Minh;Tran, Van Khai
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.472-478
    • /
    • 2018
  • In this study, the sintering mechanism of woodceramics (WCs) from cashew nut shell waste (CNSW) was studied by analyzing chemical reactions and structural changes during the sintering process of of CNSW powder, liquefied wood and green bodies of WCs at $900^{\circ}C$ for 60 minutes in the $CO_2$ atmosphere. The chemical and structural properties of the products were investigated by X-ray diffraction (XRD), Raman spectroscopy, Fourier Transform Infrared (FTIR), and scanning electron microscope (SEM). The results showed that the decomposition reactions of liquefied wood and CNSW occurred simultaneously to form the hard carbon and the soft carbon at high temperature. The sintering mechanism of WCs has been presented.

AN EFFECTIVE SEGMENT PRE-FETCHING FOR SHORT-FORM VIDEO STREAMING

  • Nguyen Viet Hung;Truong Thu Huong
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.81-93
    • /
    • 2023
  • The popularity of short-form video platforms like TikTok has increased recently. Short-form videos are significantly shorter than traditional videos, and viewers regularly switch between different types of content to watch. Therefore, a successful prefetching strategy is essential for this novel type of video. This study provides a resource-effective prefetching technique for streaming short-form videos. The suggested solution dynamically adjusts the quantity of prefetched video data based on user viewing habits and network traffic conditions. The results of the experiments demonstrate that, in comparison to baseline approaches, our method may reduce data waste by 21% to 83%, start-up latency by 50% to 99%, and the total time of Re-buffering by 90% to 99%.

Investigation of Strength Characteristics of Ferrous Slag and Waste Concrete in Water Contacting Environment by Exposure to Raining Events

  • Kim, Byung-Gon;Shin, Hyunjin;Lee, Seunghak;Park, Junboum
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 2016
  • Ferrous slag is a by-product from steel making process and waste concrete is generated from construction activities. Large part of ferrous slag and waste concrete are recycled as construction materials. However, Ca2+ leaching out of ferrous slag and waste concrete in the water-contacting environment can cause a strength change. Strength can be reduced due to the dissolution of solid form of CaO which is one of the main contents of ferrous slag and waste concrete. On the other hand, strength can be enhanced due to the pozzolanic reaction of cementitious components with water. In this study, steelmaking slag, blast furnace slag, and waste concrete were aged by exposure to raining events, and the change of their compaction and shear strength characteristics was investigated. Optimum moisture content of all materials used in this study increased with aging period while maximum dry unit weight slightly decreased, implying that the relative contents of fine particles increased as the CaO solid particles were dissolved. Internal friction angle and shear strength of recycled materials also increased with aging period, indicating that the materials became denser by the decrease of void ratio attributed to the fine particles generated during the weathering process and the development of cementitious compounds increasing the bonding and interlocking forces between the particles. The results of this study demonstrated that mechanical strength of recycled materials used as construction materials has little chance to be deteriorated during their service life.

Recent Progress in Waste Treatment Technology for Pyroprocessing at KAERI (파이로 공정폐기물 처리기술의 최근 KAERI 연구동향)

  • Park, Geun-Il;Jeon, Min Ku;Choi, Jung-Hoon;Lee, Ki-Rak;Han, Seung Youb;Kim, In Tae;Cho, Yung-Zun;Park, Hwan-Seo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.279-298
    • /
    • 2019
  • This study comprehensively addresses recent progress at KAERI in waste treatment technology to cope with waste produced by pyroprocessing, which is used to effectively manage spent fuel. The goal of pyroprocessing waste treatment is to reduce final waste volume, fabricate durable waste forms suitable for disposal, and ensure safe packaging and storage. KAERI employs grouping of fission products recovered from process streams and immobilizes them in separate waste forms, resulting in product recycling and waste volume minimization. Novel aspects of KAERI approach include high temperature treatment of spent oxide fuel for the fabrication of feed materials for the oxide reduction process, and fission product concentration or separation from LiCl or LiCl-KCl salt streams for salt recycling and higher fission-product loading in the final waste form. Based on laboratory-scale tests, an engineering-scale process test is in progress to obtain information on the performance of scale-up processes at KAERI.

The Utilization of Waste Seashell for High Temperature Desulfurization

  • Kim, Young-Sik;Hong, Sung-Chul
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.2
    • /
    • pp.136-140
    • /
    • 2010
  • The integrated gasification combined cycle (IGCC) is one of the most promising proposed processes for advanced electric power generation that is likely to replace conventional coal combustion. This emerging technology will not only improve considerably the thermal efficiency but also reduce or eliminate the environmentally adverse effects normally associated with coal combustion. The IGCC process gasifies coal under reducing conditions with essentially all the sulfur existing in the form of hydrogen sulfide ($H_2S$) in the product fuel gas. The need to remove $H_2S$ from coal derived fuel gases is a significant concern which stems from stringent government regulations and also, from a technical point of view and a need to protect turbines from corrosion. The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_2S$ was studied in a thermogravimetric analyzer at temperature between $600^{\circ}C$ and $800^{\circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affects the $H_2S$ removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electronmicroscopy.

Consolidation to Bulk Ceramic Bodies from Oyster Shell Powder (굴 패각 분말로부터 벌크 세라믹 구조체 제조)

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Min, Jae Hong
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.221-227
    • /
    • 2016
  • Waste oyster shells create several serious problems; however, only some parts of them are being utilized currently. The ideal solution would be to convert the waste shells into a product that is both environmentally beneficial and economically viable. An experimental study is carried out to investigate the recycling possibilities for oyster shell waste. Bulk ceramic bodies are produced from the oyster shell powder in three sequential processes. First, the shell powder is calcined to form calcium oxide CaO, which is then slaked by a slaking reaction with water to produce calcium hydroxide $Ca(OH)_2$. Then, calcium hydroxide powder is formed by uniaxial pressing. Finally, the calcium hydroxide compact is reconverted to calcium carbonate via a carbonation reaction with carbon dioxide released from the shell powder bed during firing at $550^{\circ}C$. The bulk body obtained from waste oyster shells could be utilized as a marine structural porous material.

An Experimental Study on the Heat Exchanger for the Engine Waste Heat Recovery Using Serrated Fins and Bayonet Tube (톱니형휜이 부착된 2중 열교환관을 이용한 엔진 배열회수기에 관한 실험적 연구)

  • Yang Tae-Jin;Kim Jong-Soo;Im Yong-Bin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.685-691
    • /
    • 2005
  • In this study, high performance waste heat recovery heat exchanger was developed using the bayonet tube with spiral serrated fins. Especially, heat exchanger of the bayonet tube type was operated well because of double water passes mechanism and characteristics. A cooling water Passes down inner tubes to thimble-form tubes, then flows back up as it boils. The heat exchanger of bayonet tube type was composed of steel tube with 7channels$(I.D_1\;14mm.\;I.D_2\;31.6mm)$ and spiral serrated fins. The performance tests were conducted under the following conditions A cooling water flow rate was 273kg/h and engine l·pm was varied from 750rpm to 3500 rpm. From the experimental result. waste heat recovery was 9.21kW when engine rpm was 3500. and pressure drop was $15\~260mmHg/m^3$ The effectiveness of heat exchanger was about /$0.7\~0.9$. The performance of heat exchanger was evaluated by using the $\varepsilon-NTU$ method. In the study the NTU of the heat exchanger was $1.57\~2.33$.

Fundamental Studies for the Removal and Recovery of Silver from Waste Photo-Developing Solution by Solvent Extraction (사진폐액으로부터 용매추출에 의한 은의 제거 및 회수에 대한 기초연구)

  • Lee, Sun-Hwa;Kim, Dong-Su;Lee, Hwa-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.122-127
    • /
    • 2006
  • Fundamental studies were carried out for an effective removal and recovery of silver from waste photo-developing solution by solvent extraction. The organic solvents examined for silver-extraction were ALIQUAT 336, D2EHPA, KELEX 100, and TBP. ALIQUAT 336, which is an anionic exchanger, was found to be efficient for the extraction of silver and the reason for this was considered to be due to the chloride ion contained in its structure. The extent of silver extraction was examined to increase with the concentration of ALIQUAT 336 until it reached 0.6 M and no more extraction was observed above this concentration. The extraction of silver by ALIQUAT 336 was found to reach its pseudo-equilibrium within a few minutes after the reaction started and additional slight increase in silver extraction was observed until 30 minutes of reaction time. The observed differences in silver extraction for artificial and actual waste solutions were considered to be based upon the different ionic form of silver-containing species in these solutions.

Behavior of Radioactive Metal Surrogates Under Various Waste Combustion Conditions

  • Yang, Hee-Chul;Lee, Jae-Hee;Kim, Jung-Guk;Yoo, Jae-Hyung;Kim, Joo-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.80-89
    • /
    • 2002
  • A laboratory investigation of the behavior of radioactive metals under the various waste combustion atmospheres was conducted to predict the parameters that influence their partitioning behavior during waste incineration. Neodymium, samarium, cerium, gadolinium, cesium and cobalt were used as non-radioactive surrogate metals that are representative of uranium, plutonium, americium, curium, radioactive cesium, and radioactive cobalt, respectively. Except for cesium, all of the investigated surrogate metal compounds converted into each of their stable oxides at medium temperatures from 400 to 90$0^{\circ}C$, under oxygen- deficient and oxygen-sufficient atmospheres (0.001-atm and 0.21-atm $O_2$). At high temperatures above 1,40$0^{\circ}C$, cerium, neodymium and samarium in the form of their oxides started to vaporize but the vaporization rates were very slow up to 150$0^{\circ}C$ . Inorganic chlorine (NaCl) as well as organic chlorine (PVC) did not impact the volatility of investigated Nd$_2$O$_3$, CoO and Cs$_2$O. The results of laboratory investigations suggested that the combustion chamber operating parameters affecting the entrainment of particulate and filtration equipment operating parameters affecting particle collection efficiency be the governing parameters of alpha radionuclides partitioning during waste incineration.