• Title/Summary/Keyword: Wasserstein Generative Adversarial Networks

Search Result 5, Processing Time 0.022 seconds

Super-Resolution Reconstruction of Humidity Fields based on Wasserstein Generative Adversarial Network with Gradient Penalty

  • Tao Li;Liang Wang;Lina Wang;Rui Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1141-1162
    • /
    • 2024
  • Humidity is an important parameter in meteorology and is closely related to weather, human health, and the environment. Due to the limitations of the number of observation stations and other factors, humidity data are often not as good as expected, so high-resolution humidity fields are of great interest and have been the object of desire in the research field and industry. This study presents a novel super-resolution algorithm for humidity fields based on the Wasserstein generative adversarial network(WGAN) framework, with the objective of enhancing the resolution of low-resolution humidity field information. WGAN is a more stable generative adversarial networks(GANs) with Wasserstein metric, and to make the training more stable and simple, the gradient cropping is replaced with gradient penalty, and the network feature representation is improved by sub-pixel convolution, residual block combined with convolutional block attention module(CBAM) and other techniques. We evaluate the proposed algorithm using ERA5 relative humidity data with an hourly resolution of 0.25°×0.25°. Experimental results demonstrate that our approach outperforms not only conventional interpolation techniques, but also the super-resolution generative adversarial network(SRGAN) algorithm.

Combining multi-task autoencoder with Wasserstein generative adversarial networks for improving speech recognition performance (음성인식 성능 개선을 위한 다중작업 오토인코더와 와설스타인식 생성적 적대 신경망의 결합)

  • Kao, Chao Yuan;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.670-677
    • /
    • 2019
  • As the presence of background noise in acoustic signal degrades the performance of speech or acoustic event recognition, it is still challenging to extract noise-robust acoustic features from noisy signal. In this paper, we propose a combined structure of Wasserstein Generative Adversarial Network (WGAN) and MultiTask AutoEncoder (MTAE) as deep learning architecture that integrates the strength of MTAE and WGAN respectively such that it estimates not only noise but also speech features from noisy acoustic source. The proposed MTAE-WGAN structure is used to estimate speech signal and the residual noise by employing a gradient penalty and a weight initialization method for Leaky Rectified Linear Unit (LReLU) and Parametric ReLU (PReLU). The proposed MTAE-WGAN structure with the adopted gradient penalty loss function enhances the speech features and subsequently achieve substantial Phoneme Error Rate (PER) improvements over the stand-alone Deep Denoising Autoencoder (DDAE), MTAE, Redundant Convolutional Encoder-Decoder (R-CED) and Recurrent MTAE (RMTAE) models for robust speech recognition.

Automaitc Generation of Fashion Image Dataset by Using Progressive Growing GAN (PG-GAN을 이용한 패션이미지 데이터 자동 생성)

  • Kim, Yanghee;Lee, Chanhee;Whang, Taesun;Kim, Gyeongmin;Lim, Heuiseok
    • Journal of Internet of Things and Convergence
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2018
  • Techniques for generating new sample data from higher dimensional data such as images have been utilized variously for speech synthesis, image conversion and image restoration. This paper adopts Progressive Growing of Generative Adversarial Networks(PG-GANs) as an implementation model to generate high-resolution images and to enhance variation of the generated images, and applied it to fashion image data. PG-GANs allows the generator and discriminator to progressively learn at the same time, continuously adding new layers from low-resolution images to result high-resolution images. We also proposed a Mini-batch Discrimination method to increase the diversity of generated data, and proposed a Sliced Wasserstein Distance(SWD) evaluation method instead of the existing MS-SSIM to evaluate the GAN model.

Face Recognition Research Based on Multi-Layers Residual Unit CNN Model

  • Zhang, Ruyang;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1582-1590
    • /
    • 2022
  • Due to the situation of the widespread of the coronavirus, which causes the problem of lack of face image data occluded by masks at recent time, in order to solve the related problems, this paper proposes a method to generate face images with masks using a combination of generative adversarial networks and spatial transformation networks based on CNN model. The system we proposed in this paper is based on the GAN, combined with multi-scale convolution kernels to extract features at different details of the human face images, and used Wasserstein divergence as the measure of the distance between real samples and synthetic samples in order to optimize Generator performance. Experiments show that the proposed method can effectively put masks on face images with high efficiency and fast reaction time and the synthesized human face images are pretty natural and real.

Network Anomaly Traffic Detection Using WGAN-CNN-BiLSTM in Big Data Cloud-Edge Collaborative Computing Environment

  • Yue Wang
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.375-390
    • /
    • 2024
  • Edge computing architecture has effectively alleviated the computing pressure on cloud platforms, reduced network bandwidth consumption, and improved the quality of service for user experience; however, it has also introduced new security issues. Existing anomaly detection methods in big data scenarios with cloud-edge computing collaboration face several challenges, such as sample imbalance, difficulty in dealing with complex network traffic attacks, and difficulty in effectively training large-scale data or overly complex deep-learning network models. A lightweight deep-learning model was proposed to address these challenges. First, normalization on the user side was used to preprocess the traffic data. On the edge side, a trained Wasserstein generative adversarial network (WGAN) was used to supplement the data samples, which effectively alleviates the imbalance issue of a few types of samples while occupying a small amount of edge-computing resources. Finally, a trained lightweight deep learning network model is deployed on the edge side, and the preprocessed and expanded local data are used to fine-tune the trained model. This ensures that the data of each edge node are more consistent with the local characteristics, effectively improving the system's detection ability. In the designed lightweight deep learning network model, two sets of convolutional pooling layers of convolutional neural networks (CNN) were used to extract spatial features. The bidirectional long short-term memory network (BiLSTM) was used to collect time sequence features, and the weight of traffic features was adjusted through the attention mechanism, improving the model's ability to identify abnormal traffic features. The proposed model was experimentally demonstrated using the NSL-KDD, UNSW-NB15, and CIC-ISD2018 datasets. The accuracies of the proposed model on the three datasets were as high as 0.974, 0.925, and 0.953, respectively, showing superior accuracy to other comparative models. The proposed lightweight deep learning network model has good application prospects for anomaly traffic detection in cloud-edge collaborative computing architectures.