• Title/Summary/Keyword: Washcoat

Search Result 23, Processing Time 0.021 seconds

Characterization of $TiO_2$ base catalyst for de-NOx (질소산화물 제거를 위한 $TiO_2$계 촉매 제조 및 특성 시험)

  • Kim, Tae-Hoon;Jo, Young-Min;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.379-385
    • /
    • 2011
  • One of main catalysts for De-NOx in SCR is a $V_2O_5/TiO_2$, and this work formulated powdery catalysts focusing ultimately on corrugate catalytic support. The prepared catalyst consisted of anatase $TiO_2$. Amount of the added vanadium oxide determined the viscosity of catalyst slurry, which is important for washcoat for a final corrugate type catalytic reactor. The test showed a proportional relation between adsorption amount of ammonia and specific surface area. De-NOx efficiency could be obtained up to 96.3 % at $400^{\circ}C$ with a spacial velocity of $4,000hr^{-1}$.

Catalyst preparations, coating methods, and supports for micro combustor (초소형 연소기를 위한 촉매 합성, 담지방법 및 담지체)

  • Jin, Jung-Kun;Kim, Chung-Ki;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.235-241
    • /
    • 2006
  • Catalytic combustion is one of the suitable methods for micro power source due to high energy density and no flame quenching. Catalyst loading in the micro structured combustion chamber is one of the most important issues in the development of micro catalytic combustors. In this research, to coat catalyst on the chamber wall, two methods were investigated. First, $Al_2O_3$ was selected as a support of Pt and $Pt/Al_2O_3$ was synthesized through the alumina sol-gel procedure. To improve the coating thickness and adhesion between catalyst and substrate, heat resistant and water solvable organic-inorganic hybrid binder was used. Porous silicon was also investigated as a catalyst support for platinum. Through the parametric studies of current density and etching time, fabrication process of $1{\sim}2{\mu}m$ of diameter and about $25{\mu}m$ depth pores was confirmed. Coated substrates were test in the micro channel combustor which was fabricated by the wet etching and machining of SUS 304. Using $Pt/Al_2O_3$ coated substrate and Pt coated porous silicon substrate, conversion rate of fuel was over 95% for $H_2$/Air premixed gas.

  • PDF

EVALUATION OF NOx REDUCTION CATALYST BY MODEL GAS FOR LEAN-BURN NATURAL GAS ENGINE

  • LEE C. H.;CHO B. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.591-598
    • /
    • 2005
  • A three-way catalyst system of a natural gas vehicle (NGV) has characteristics of higher fuel consumption and higher thermal load than a lean-bum catalyst system. To meet stringent emission standards in the future, NGV with the lean-bum engine may need a catalyst system to reduce the amounts of HC, CO and NOx emission, although natural gas system has low emission characteristics. We conducted experiments to evaluate the conversion efficiency of the NOx reduction catalyst for the lean-burn natural gas engine. The NOx reduction catalysts were prepared with the ${\gamma}-Al_{2}O_3$ washcoat including Ba based on Pt, Pd and Rh precious metal. In the experiments, effective parameters were space velocity, spike duration of the rich condition, and the temperature of flowing model gas. From the results of the experiments, we found that the temperature for maximum NOx reduction was around $450^{\circ}C$, and the space velocity for optimum NOx reduction was around $30,000\;h^{-1}$ And we developed an evaluation model of the NOx reduction catalyst to evaluate the conversion performance of each other catalysts.

Characteristics of NOx Reduction on NSR(NOx Storage and Reduction) Catalyst Supported by Ni, Ru-ZSM-5 Additives (Ni, Ru-ZSM-5를 첨가한 NSR 촉매의 NOx 정화 특성)

  • Choi, Byung-Chul;Lee, Choon-Hee;Jeong, Jong-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.105-111
    • /
    • 2007
  • In this study, we investigated the conversion performance of de-NOx catalyst for lean-burn natural gas engine. As a de-NOx catalyst, NOx storage reduction catalyst was composed of Pt, Pd and Rh with washcoat including Ba and Ni, Ru-ZSM-5. Ni, Ru-ZSM-5, which was regarded as a NOx direct decomposition catalyst, was made up of ion exchanged ZSM-5 by 5wt.% Ni or Ru. The performance of de-NOx catalyst was evaluated by NOx storage capacity and catalytic reduction in air/fuel, $\lambda=1.6$. The catalytic reaction was also observed when the added fuel was supplied to fuel rich atmosphere by fuel spike period of 5 seconds. The NOx conversion of the catalysts with Ni-ZSM-5 or Ru-ZSM-5 was mainly caused by the effect of NOx adsorption of Ba rather than the catalytic reduction of Ni, Ru-ZSM-5. Ni, Ru-ZSM-5 catalysts can not use for the NSR catalyst because they have quick process in thermal deactivation.

REDUCTION CHARACTERISTICS OF NOx STORAGE CATALYST FOR LEAN-BURN NATURAL GAS VEHICLES

  • Lee, C.H.;Choi, B.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.667-674
    • /
    • 2007
  • Various types of NOx storage catalysts for NGV's were designed, manufactured, and tested in this work on a model gas test bench. As in most of other studies on NOx storage catalyst, alkaline earth metal barium(Ba) was used as the NOx adsorbing substance. The barium-based experimental catalysts were designed to contain different amounts of Ba and precious metals at various ratios. Reaction tests were performed to investigate the NOx storage capacity and the NOx conversion efficiency of the experimental catalysts. From the results, it was found that when Ba loading of a catalyst was increased, the quantity of NOx stored in the catalyst increased in the high temperature range over 350. With more Ba deposition, the NOx conversion efficiency as well as its peak value increased in the high temperature range, but decreased in the low temperature range. The best of de-NOx catalyst tested in this study was catalyst B, which was loaded with 42.8 g/L of Ba in addition to Pt, Pd and Rh in the ratio of 7:7:1. In the low temperature range under $450^{\circ}C$, the NOx conversion efficiencies of the catalysts were lower when $CH_4$, instead of either $C_3H_6$ or $C_3H_8$, was used as the reductant.

The Effects of Zeolite Structure and Ion-exchange Material on NH3-SCR Reaction (제올라이트 종류 및 이온교환 물질에 따른 NH3-SCR 촉매 반응 특성)

  • Hwang, Inhye;Lee, Junho;Kim, Hongsuk;Jeong, Youngil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.135-141
    • /
    • 2014
  • $NH_3$-SCR has high NOx removal efficiency approximately 80~90%. Recently, the copper or iron ion-exchanged zeolite catalysts are widely used as automobile SCR catalysts. In this paper, the effect of the space velocity, temperature of reaction and $NO_2$ addition on the $NH_3$-SCR reaction were studied using various zeolite SCR catalysts. The test was conducted with small sized fresh catalysts in a laboratory fixed-bed flow reactor system using simulated gases. It is found that the activity of the BEA is better than MFI. It seems that three-dimensional framework and a wide pore entrance of BEA enhances the SCR activity. It is also found that low temperature activity of Cu-zeolites was better than Fe-zeolites. Once $NO_2$ was added, the NOx conversion activity of the Cu-zeolite was slightly enhanced, whereas remarkable improvement was achieved by Fe-zeolite.

Catalyst Preparations, Coating Methods, and Supports for Micro Combustor (초소형 연소기를 위한 촉매 합성, 담지방법 및 담지체)

  • Jin, Jung-Kun;Kim, Chung-Ki;Lee, Sung-Ho;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.2
    • /
    • pp.7-14
    • /
    • 2006
  • Catalytic combustion is one of the suitable methods for micro power source due to high energy density and it can be applied to micro structured chamber without consideration of quenching since it is flameless combustion. Catalyst loading in the micro structured combustion chamber is one of the most important issues in the development of micro catalytic combustors. In this research, to coat catalyst on the chamber wall, two methods were investigated. First, $Al_2O_3$ was selected as a support of Pt and $Pt/Al_2O_3$ was synthesized through the alumina sol-gel procedure. To improve the coating thickness and adhesion between catalyst and substrate, heat resistant and water solvable organic-inorganic hybrid binder was used. Porous silicon was also investigated as a catalyst support for platinum. Through the parametric studies of current density and etching time, fabrication process of $1{\sim}2{\mu}m$ of diameter and about $25{\mu}m$ depth pores was confirmed. Coated substrates were test in the micro channel combustor which was fabricated by the wet etching and machining of SUS 304. Using $Pt/Al_2O_3$ coated substrate and Pt coated porous silicon substrate, conversion rate of fuel was over 95 % for $H_2/Air$ premixed gas.

  • PDF

Aging Characteristics of NOx Storage and Reduction Catalyst for Lean-bum Natural Gas Vehicles (린번 천연가스자동차용 NOx 흡장촉매의 열화특성)

  • Choi, Byung-Chul;Lee, Choon-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.147-152
    • /
    • 2007
  • This study investigates the aging characteristics of NOx storage and reduction(NSR) catalyst on the emission conditions of lean burn natural gas vehicles. We designed various NSR catalysts using by the double-layer washcoat technology to increase of a surface area and a thermal durability performance of the catalysts. The experiments were conducted with 3 kinds of the NSR catalysts, which were manufactured using by a honeycomb cordierite substrate. It was found that Ba is weak in the thermal aging because it has lower melting temperature than that of precious metals (PMs). The suitable loading amount of Ba in this study should be about 42 g/L from the results of the NOx adsorption and the NOx reduction efficiency. The major reason in deactivation of the NSR catalyst is the decrease of the adsorption site owing to the agglomeration and sintering of Ba rather than PM aging by hydrothermal aging. It was confirmed by results of BET, SEM and TEM.

Physicochemical Characteristics Based on Hydrothermal Aging of Prepared DOC

  • Seo, Choong-Kil
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.13-22
    • /
    • 2013
  • This paper reports the investigation of the physical and chemical characteristics of the prepared 3Pt-2MgO-$3ZrO_2$-$2CeO_2/Al_2O_3$ DOC, based on its hydrothermal aging. As a result of impregnating and reducing the $H_2PtCl_6$ $6H_2O$ precursor on a ${\gamma}-Al_2O_3$ basis, it was well dispersed into small particles with the range 2-3nm. This was because the $Al_2O_3$ acted as a barrier to prevent movement of the catalyst particles. For a hydrothermally aged catalyst for 9h at $700^{\circ}C$, its performance when purifying harmful gases decreased compared to a fresh catalyst, but its specific surface area was at the same level. This was because the performance of the catalyst was reduced by the sintering of the precious metal Pt, rather than by washcoat sintering and pore clogging. For an excessively hydrothermally aged catalyst for 9h at $850^{\circ}C$, Pt grew into an approximately 50nm class, formed a cluster compared to a fresh catalyst. The $CeO_2$ promoters also formed clusters among components of the same type, reducing their specific surface area to $114m^2/g$, which was 14% less than a fresh catalyst.

An Effective Approach of Equivalent Elastic Method for Three-Dimensional Finite Element Analysis of Ceramic Honeycomb Substrates (세라믹 하니컴 담체의 3차원 유한요소해석을 위한 등가탄성방법의 효과적인 접근)

  • Baek, Seok-Heum;Cho, Seok-Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.223-233
    • /
    • 2011
  • A ceramic monolithic catalyst is a honeycomb structure that consists of two layers. The honeycomb structure is regarded as a continuum in structure and heat-flow analysis. The equivalent mechanical properties of the honeycomb structure were determined by performing finite element analysis (FEA) for a test specimen. Bending strength experiments and FEA of the test specimen used in ASTM C1674-08 standard test were performed individually. The bonding coefficient between the cordierite ceramic layer and the washcoat layer was almost zero. The FEA test specimen was modeled on the basis of the bonding coefficient. The elastic modulus, Poisson's ratio, and the thermal properties of the ceramic monolithic substrate were determined by performing the FEA of the test specimen.