• Title/Summary/Keyword: Wallman cover

Search Result 6, Processing Time 0.019 seconds

MINIMAL WALLMAN COVERS OF TYCHONOFF SPACES

  • Kim, Chang-Il
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1009-1018
    • /
    • 1997
  • Observing that for any $\beta_c$-Wallman functor $A$ and any Tychonoff space X, there is a cover $(C_1(A(X), X), c_1)$ of X such that X is $A$-disconnected if and only if $c_1 : C_1(A(X), X) \longrightarrow X$ is a homeomorphism, we show that every Tychonoff space has the minimal $A$-disconnected cover. We also show that if X is weakly Lindelof or locally compact zero-dimensional space, then the minimal G-disconnected (equivalently, cloz)-cover is given by the space $C_1(A(X), X)$ which is a dense subspace of $E_cc(\betaX)$.

  • PDF

WALLMAN SUBLATTICES AND QUASI-F COVERS

  • Lee, BongJu;Kim, ChangIl
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.253-261
    • /
    • 2014
  • In this paper, we first will show that for any space X and any Wallman sublattice $\mathcal{A}$ of $\mathcal{R}(X)$ with $Z(X)^{\sharp}{\subseteq}\mathcal{A}$, (${\Phi}^{-1}_{\mathcal{A}}(X)$, ${\Phi}_{\mathcal{A}}$) is the minimal quasi-F cover of X if and only if (${\Phi}^{-1}_{\mathcal{A}}(X)$, ${\Phi}_{\mathcal{A}}$) is a quasi-F cover of X and $\mathcal{A}{\subseteq}\mathcal{Q}_X$. Using this, if X is a locally weakly Lindel$\ddot{o}$f space, the set {$\mathcal{A}|\mathcal{A}$ is a Wallman sublattice of $\mathcal{R}(X)$ with $Z(X)^{\sharp}{\subseteq}\mathcal{A}$ and ${\Phi}^{-1}_{\mathcal{A}}(X)$ is the minimal quasi-F cover of X}, when partially ordered by inclusion, has the minimal element $Z(X)^{\sharp}$ and the maximal element $\mathcal{Q}_X$. Finally, we will show that any Wallman sublattice $\mathcal{A}$ of $\mathcal{R}(X)$ with $Z(X)^{\sharp}{\subseteq}\mathcal{A}{\subseteq}\mathcal{Q}_X$, ${\Phi}_{\mathcal{A}_X}:{\Phi}^{-1}_{\mathcal{A}}(X){\rightarrow}X$ is $z^{\sharp}$-irreducible if and only if $\mathcal{A}=\mathcal{Q}_X$.

WALLMAN COVERS AND QUASI-F COVERS

  • Kim, Chang Il;Shin, Chang Hyeob
    • The Pure and Applied Mathematics
    • /
    • v.20 no.2
    • /
    • pp.103-108
    • /
    • 2013
  • Observing that for any space X, there is a Wallman sublattice $\mathfrak{A}_X$ and that QFX is homeomorphic to a subspace $X_q$ of the Wallman cover $\mathfrak{L}(\mathfrak{A}_X)$ of $\mathfrak{A}_X$, we show that ${\beta}QFX$ and $\mathfrak{L}(\mathfrak{A}_X)$ are homeomorphic.

HEWITT REALCOMPACTIFICATIONS OF MINIMAL QUASI-F COVERS

  • Kim, Chang Il;Jung, Kap Hun
    • Korean Journal of Mathematics
    • /
    • v.10 no.1
    • /
    • pp.45-51
    • /
    • 2002
  • Observing that a realcompactification Y of a space X is Wallman if and only if for any non-empty zero-set Z in Y, $Z{\cap}Y{\neq}{\emptyset}$, we will show that for any pseudo-Lindel$\ddot{o}$f space X, the minimal quasi-F $QF({\upsilon}X)$ of ${\upsilon}X$ is Wallman and that if X is weakly Lindel$\ddot{o}$, then $QF({\upsilon}X)={\upsilon}QF(X)$.

  • PDF

MINIMAL QUASI-F COVERS OF REALCOMPACT SPACES

  • Jeon, Young Ju;Kim, Chang Il
    • The Pure and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.329-337
    • /
    • 2016
  • In this paper, we show that every compactification, which is a quasi-F space, of a space X is a Wallman compactification and that for any compactification K of the space X, the minimal quasi-F cover QFK of K is also a Wallman compactification of the inverse image ${\Phi}_K^{-1}(X)$ of the space X under the covering map ${\Phi}_K:QFK{\rightarrow}K$. Using these, we show that for any space X, ${\beta}QFX=QF{\beta}{\upsilon}X$ and that a realcompact space X is a projective object in the category $Rcomp_{\sharp}$ of all realcompact spaces and their $z^{\sharp}$-irreducible maps if and only if X is a quasi-F space.