• Title/Summary/Keyword: Wall-function

Search Result 954, Processing Time 0.032 seconds

OPTIMUM PERFORMANCE AND DESIGN OF A RECTANGULAR FIN

  • Kang, H.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.705-711
    • /
    • 2007
  • A rectangular fin with a fluid in the inside wall is analyzed and optimized using a two-dimensional analytical method. The influence of the fluid convection characteristic number in the inside wall and the fin base thickness on the fin base temperature is listed. For the fixed fin volumes, the maximum heat loss and the corresponding optimum fin effectiveness and dimensions as a function of the fin base thickness, convection characteristic numbers ratio, convection characteristic number over the fin, fluid convection characteristic number in the inside wall, and the fin volume are represented. One of the results shows that both the optimum heat loss and the corresponding fin effectiveness increase as the fin base thickness decreases.

A Hybrid Genetic Algorithms for Inverse Radiation Analysis (역복사 해석을 위한 혼합형 유전알고리즘에 관한 연구)

  • Kim, Ki-Wan;Baek, Seung-Wook;Kim, Man-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1639-1644
    • /
    • 2003
  • A hybrid genetic algorithm is developed for estimating the wall emissivities for an absorbing, emitting, and scattering media in a two-dimensional irregular geometry with diffusely emitting and reflecting opaque boundaries by minimizing an objective function, which is expressed by the sum of square errors between estimated and measured temperatures at only four data positions. The finite-volume method was employed to solve the radiative transfer equation for a two-dimensional irregular geometry. The results show that a developed hybrid genetic algorithms reduce the effect of genetic parameters on the performance of genetic algorithm and that the wall emissivities are estimated accurately without measurement errors.

  • PDF

The Turbulent flow analysis by the Finite Element Method (유한요소법을 이용한 난류유동해석)

  • 황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.253-256
    • /
    • 1999
  • The Streamline Upwind Petrov-Galerkin(SUPG) finite element method is used to solve the two-dimensional laminar and turbulent flow. The flow is simulated by averaged Navier-Stokes equations with a penalty function approach and the lograithmic(k-$\varepsilon$) turbulent model is employed to take into account its turbulent behavior. The near-wall viscous sub-layer model is employed to approach the dominant viscous effects in the near wall zones. To find a good-enough initial guess of the Newton-Raphson iteration solving Nonlinear Matrix the Incremental method is considered for momentum and the Incomplete logarithmic turbu-lent equations for Turbulence. The validation of our method is investigated in comparision with published experimental data.

  • PDF

Development of a Nonlinear Near-Wall Model for Turbulent Flow and Heat Transfer (난류유동 및 대류열전달에 대한 비선형 난류모형의 개발)

  • Park, Tae-Seon;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1569-1580
    • /
    • 2001
  • A new nonlinear near-wall turbulence model is developed to predict turbulent flow and heat transfer in strongly nonequilibrium flows. The k-$\varepsilon$-f$\sub$${\mu}$/, model of Park and Sung$\^$(1)/ is extended to a nonlinear formulation. The stress-strain relationship is the thrid-order in the mean velocity gradients. The strain dependent coefficients are obatined from the realizability constraints and the singular behavior at large strains. An improved explicit heat flux model is proposed with the aid of Cayley-Hamilton theorem. This new model includes the quadratic effects of flow deformations. The near-wall asymptotic behavior is incorporated by modifying the f$\sub$λ/ function. The model performance is shown to be satisfactory.

Optimization of a Reversed Trapezoidal Fin (역 사다리꼴 핀의 최적화)

  • Kang Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.987-995
    • /
    • 2006
  • A reversed trapezoidal fin with the fluid in the inside wall is analyzed and optimized in this study. As a fin base boundary condition, the heat transfer from inside wall fluid to the fin base is considered. The values of fin base temperature with the variations of inside wall fluid convection characteristic number and fin base length are listed. The heat transfer, fin effectiveness, fin length and fin base height are optimized as a function of fin base length, convection characteristic number ratio, fin shape factor and fin volume.

Analysis of the False Diffusion Effects in Numerical Simulation of Diesel Spray Impinging on Inclined Walls (경사진 벽충돌 디젤 분무에 대한 수치해석에서 오류확산이 미치는 영향)

  • Gwon, H.R.;Lee, S.H.
    • Journal of ILASS-Korea
    • /
    • v.13 no.1
    • /
    • pp.22-27
    • /
    • 2008
  • The false diffusion occurs generally when the flow is oblique to the grid lines and when there is a non-zero gradient of the dependent variable in the direction normal to the flow. This numerical problem can overestimate diffusion terms in the continuous phase, causing the numerical inaccuracy for the simulation of impinging sprays on inclined walls because most of spray calculation uses rectangular grid system. Therefore, the main objective of this article is to investigate numerically the influence of false diffusion on numerical simulation for spray-wall impingement on inclined walls. It is found that unlike the spray impingement normal to the wall, the numerical diffusion exists in the case when diesel sprays impinge on the inclined walls with different angles. The results show that the correction function should be considered for accurate prediction of spray penetration length and more elaborate numerical schemes should be utilized to reduce the false diffusion.

  • PDF

Development of Dry Roof Construction Method Using Double Skin Roof System (이중 지붕 시스템을 활용한 건식 지붕 공법 개발)

  • Kim, Sung-Jin;Kim, Chung-Shik;Ryu, Han-Guk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.256-257
    • /
    • 2013
  • Roof and exterior wall of general formal buildings are designed and constructed through design focused exterior wall system and drainage and waterproof roof system. However, there are no classification of exterior wall and roof in freeform buildings and they are integrated as a surface of freeform buildings. Therefore it is necessary to develop the dry roof construction method using double skin roof system satisfying the design and function of the envelope. In this study, we have an effort to develop construction method of double-skin roof system using metal panel and PV.

  • PDF

Optimum Working Condition of Side Wall End Milling Using Response Surface Methodology (측벽 엔드밀 가공 시 반응표면법을 이용한 최적 가공조건)

  • Hong, Do-Kwan;Choi, Jae-Gi;Park, Jin-Woo;Baek, Hwang-Soon;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1097-1104
    • /
    • 2008
  • Working condition is one of the most important factors in precision working. In this study, we optimized the vibration acceleration of working progress direction using RSM(response surface methodology) by table of orthogonal array. RSM was well adapted to make analytic model for minimizing vibration acceleration, created the objective function and saved a great deal of computational time. Therefore, it is expected that the proposed optimization procedure using RSM can be easily utilized to solve the optimization problem of working condition. The experimental results of the surface roughness and vibration acceleration showed the validity of the proposed working condition of side wall end-milling as it can be observed.

Laparoscopic Rectovaginal Septal Repair without Mesh for Anterior Rectocele

  • Kwak, Han Deok;Ju, Jae Kyun
    • Journal of Minimally Invasive Surgery
    • /
    • v.21 no.4
    • /
    • pp.177-179
    • /
    • 2018
  • A rectocele with a weakened rectovaginal septum can be repaired with various surgical techniques. We performed laparoscopic posterior vaginal wall repair and rectovaginal septal reinforcement without mesh using a modified transperineal approach. A 63-year-old woman with outlet dysfunction constipation complained of lower pelvic pressure and sense of heaviness for 30 years. Initial defecography showed an anterior rectocele with a 45-mm anterior bulge and perineal descent. Laparoscopic procedures included peritoneal and rectovaginal septal dissection directed toward the perineal body, rectovaginal septal suturing, and peritoneal closure. The patient started a soft diet the following day and was discharged on the 5th postoperative day without any complications. The patient had no dyschezia or dyspareunia, and no problem with bowel function; 3-month follow-up defecography showed a decrease in bulging to 18 mm. Laparoscopic posterior vaginal wall and rectovaginal septal repair is safe and feasible for treatment of a rectocele, and enables early recovery.

Treatment of Frontal Sinus Fractures According to Fracture Patterns (전두동 골절 양상에 따른 치료)

  • Ha, Ju-Ho;Kim, Yong-Ha;Nam, Hyun-Jae;Kim, Tae-Gon;Lee, Jun-Ho
    • Archives of Craniofacial Surgery
    • /
    • v.10 no.2
    • /
    • pp.91-96
    • /
    • 2009
  • Purpose: Frontal sinus fractures are relatively less common than other facial bone fractures. They are commonly concomitant with other facial bone fractures. They can cause severe complications but the optimal treatment of frontal sinus fractures remains controversial. Currently, many principles of treatment were introduced variously. The authors present valid and simplified protocols of treatment for frontal sinus fractures based on fracture pattern, nasofrontal duct injury, and complications. Methods: A retrospective chart review was performed on 36 cases of frontal sinus fractures between January, 2004 and January, 2009. The average age of patients was 33.7 years. Fracture patterns were classified by displacement of anterior and posterior wall, comminution, nasofrontal duct injury. These fractures were classified in 4 groups: I. anterior wall linear fractures; II. anterior wall displaced fractures; III. anterior wall displaced and posterior wall linear fractures; IV. anterior wall and posterior wall displaced fractures. Also, assessment of nasofrontal duct injury was conducted with preoperative coronal section computed tomographic scan and intraoperative findings. Patients were treated with various procedures including open reduction and internal fixation, obliteration, galeal frontalis flap and cranialization. Results: 12 patients are group I (33.3 percent), 14 patient were group II (38.8 percent), group III, IV were 5 each (13.9 percent). Frontal sinus fractures were commonly associated with zygomatic fractures (21.8 percent). 9 patients had nasofrontal duct injury. The complication rate was 25 percent (9 patients), including hypoesthesia, slight forehead irregularity, transient cerebrospinal fluid leakage. Conclusion: The critical element of successful frontal sinus fracture repair is precise diagnosis of the fracture pattern and nasofrontal duct injury. The main goal of management is the restoration of the sinus function and aesthetic preservation.