DOI QR코드

DOI QR Code

Development of a Nonlinear Near-Wall Model for Turbulent Flow and Heat Transfer

난류유동 및 대류열전달에 대한 비선형 난류모형의 개발

  • Published : 2001.11.01

Abstract

A new nonlinear near-wall turbulence model is developed to predict turbulent flow and heat transfer in strongly nonequilibrium flows. The k-$\varepsilon$-f$\sub$${\mu}$/, model of Park and Sung$\^$(1)/ is extended to a nonlinear formulation. The stress-strain relationship is the thrid-order in the mean velocity gradients. The strain dependent coefficients are obatined from the realizability constraints and the singular behavior at large strains. An improved explicit heat flux model is proposed with the aid of Cayley-Hamilton theorem. This new model includes the quadratic effects of flow deformations. The near-wall asymptotic behavior is incorporated by modifying the f$\sub$λ/ function. The model performance is shown to be satisfactory.

Keywords

References

  1. Park T.S. and Sung H.J., 1997, 'A New Low-Reynolds-Number $k-{varepsilon}-f_{mu}$ Model for Predictions Involving Multiple Surfaces,' Fluid Dynamics Research, Vol. 20, pp. 97-113 https://doi.org/10.1016/S0169-5983(96)00047-0
  2. Apsley, D.D. and Leschziner, M.A., 1998, 'A New Low-Reynolds-Number Nonlinear Two-Equation Turbulence Model for Complex Flows,' Int. J. Heat and Fluid Flow, Vol. 19, pp. 209-222 https://doi.org/10.1016/S0142-727X(97)10007-8
  3. Craft, T.J., Launder, B.E. and Suga, K., 1996, 'Development and Application of a Cubic Eddy-Viscosity Model of Turbulence,' lnt. J. Heat and Fluid Flow, Vol. 17, pp. 108-115 https://doi.org/10.1016/0142-727X(95)00079-6
  4. Gatski, T.B. and Speziale, C.G., 1993, 'On Explicit Algebraic Stress Models for Complex Turbulent Flows,' J. Fluid Mech, Vol. 254, pp. 59-78 https://doi.org/10.1017/S0022112093002034
  5. Park, T.S. and Sung, H.J., 1995, 'A Nonlinear Low-Reynolds-Number $k-{\varepsilon}$ Model for Turbulent Separated and Reattaching Flows - (I)Flow Field Computation,' Int. J. Heat and Mass Transfer, Vol. 38, pp. 2657-2666 https://doi.org/10.1016/0017-9310(95)00009-X
  6. Rhee, G.H. and Sung, H.J., 2000, 'A Nonlinear Low-Reynolds-Number Heat Transfer Model for Turbulent Separated and Reattaching Flows,' Int. J. Heat and Mass Transfer, Vol. 43, pp. 1439-1448 https://doi.org/10.1016/S0017-9310(99)00223-9
  7. Durbin, P.A. and Laurence, D., 1996, 'Nonlocal Effects in Single Point Closure,' 3rd Advances in Turbulence Research Conf., Korea Uinv., Korea, pp. 109-120
  8. Park, T.S. and Sung, H.J., 2001, ' Development of a Near-Wall Turbulence Model and Application to Jet Impingement Heat Transfer Flow,' Int. J. Heat and Fluid Flow, Vol. 22, pp. 10-18 https://doi.org/10.1016/S0142-727X(00)00069-2
  9. Speziale, C.G. and Gatski, T.B., 1997, 'Analysis and Modelling of Anisotropies in the Dissipation Rate of Turbulence,' J. Fluid Mech., Vol. 344, pp. 155-180 https://doi.org/10.1017/S002211209700596X
  10. Pope, S.B., 1975, 'A More General Effective- Viscosity Hypothesis,' J. Fluid Mech, Vol. 72, pp. 331-340 https://doi.org/10.1017/S0022112075003382
  11. Park, T.S., 1999, 'Multigrid Method and Low-Reynolds-Number k- E Model for Turbulent Recirculating Flows,' Numerical Heat Transfer. Part B.: Fundamentals. Vol. 36, pp. 433-456 https://doi.org/10.1080/104077999275613
  12. Abe, K., Kondoh, T. and Nagano, Y., 1996 'A Two-Equation Heat Transfer Model Reflecting Second-Moment Closures for Wall and Free Turbulent Flows,' Int. J. Heal and Fluid Flow, Vol. 17, pp, 228-237 https://doi.org/10.1016/0142-727X(96)00037-9
  13. Rogers, M.M., Mansour, N.N. and Reynolds, W.C., 1989, 'An Algebraic Model for the Turbulent Flux of a Passive Scalar,' J. Fluid Mech., Vol. 203, pp. 77-101 https://doi.org/10.1017/S0022112089001382
  14. Shabany, Y. and Durbin, P.A., 1997, 'Explicit Algebraic Scalar Flux Approximation,' AIAA J Vol. 35, pp. 985-989
  15. Speziale, C.G., 1998, 'A Consistency Condition for Non-linear Algebraic Reynolds Stress Model in Turbulence,' lnt. J Non-linear Mech., Vol. 33, pp. 579-584 https://doi.org/10.1016/S0020-7462(97)00040-1
  16. Tavoularis, S. and Cirrsin, S., 1981, 'Experiments in Nearly Homogeneous Turbulent Shear Flow with a Uniform Mean Temperature Gradient. Part 1,' J Fluid Mech., Vol. 104, pp. 311-347 https://doi.org/10.1017/S0022112081002930
  17. Moser, R.D., Kim, J. and Mansour, N.N., 1999, 'Direct Numerical Simulation of Turbulent Channel Flow up to $Re_t$=590,' Phys. Fluids. Vol. 11, pp. 943-945 https://doi.org/10.1063/1.869966
  18. Kasagi, N., Tomita, Y. and Kuroda, A., 1992, 'Direct Numerical Simulation of Passive Scalar Field in a Turbulent Channel Flow,' ASME J. Heat Transfer, Vol. 114, pp. 598-606
  19. Wallin, S. and Johansson, A. V., 2000, 'An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows,' J. Fluid Mech., Vol. 403, pp. 89-132 https://doi.org/10.1017/S0022112099007004
  20. Driver, D.M. and Seegmiller, H.L., 1985, 'Features of a Reattaching Turbulent Shear Layer in Divergent Channel Flow,' AIAA J. Vol. 163, pp. 163-171
  21. Vogel, J.e. and Eaton, J.K., 1985, 'Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward-Facing Step,' ASME J. Heat Transfer, Vol. 107, pp 922-929
  22. Yan, X., 1993, 'A Preheated-Wall Transient Method Using Liquid Crystals for the Measurement of Heat Transfer on External Surfaces and in Duts' PhD Thesis, Univ. Calofornia, Davis