• 제목/요약/키워드: Wall heat flux

검색결과 410건 처리시간 0.02초

Heat Transfer Characteristics of an Internally-Heated Annulus Cooled with R-134a Near the Critical Pressure

  • Hong, Sung-Deok;Chun, Se-Young;Kim, Se-Yun;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.403-414
    • /
    • 2004
  • An experimental study of heat transfer characteristics near the critical pressure has been performed with an internally-heated vertical annular channel cooled by R-134a fluid. Two series of tests have been completed: (a) steady-state critical heat flux (CHF) tests, and (b) heat transfer tests for pressure reduction transients through the critical pressure. In the present experimental range, the steady-state CHF decreases with increase of the system pressure for fixed inlet mass flux and subcooling. The CHF falls sharply at about 3.8 MPa and shows a trend towards converging to zero as the pressure approaches the critical point of 4.059 MPa. The CHF phenomenon near the critical pressure does not lead to an abrupt temperature rise of the heated wall, because the CHF occurs at remarkably low power levels. In the pressure reduction transients, as soon as the pressure passes below the critical pressure from the supercritical pressure, the wall temperatures rise rapidly up to very high values due to the departure from nucleate boiling. The wall temperature reaches a maximum at the saturation point of the outlet temperature, and then tends to decrease gradually.

온돌면(溫突面)의 방열량(放熱量) 산정방법(算定方法)에 관한 연구(硏究) (A Calculation Method on Heat Flux from Ondol Floor Surface)

  • 손장열;안병욱;방승기
    • 설비공학논문집
    • /
    • 제1권2호
    • /
    • pp.173-181
    • /
    • 1989
  • Until recently there was a lack of reliable performance data for the design and operation of Ondol heating systems. This paper presents a calculation method on heat flux from Ondol floor surface. Total heat flux from floor consists of radiation and convection component. In order to analyse the characteristics of both radiation and convection heat flux, each surface temperature is measured and several temperatures near each wall are measured vertically and horizontally in a practical Ondol heating space. Radiation heat flux is calculated and analysed by Gebhart's Absorption Factor Method with the consideration of instantaneous radiant exchanges. Convection heat output is derived from the vertical temperature profiles near floor. The vertical temperature profiles could be expressed by nonlinear regression equation models and convection coefficients could be estimated by the equations. As a result, radiation, convection and total heat flux are suggested by the expression of difference between floor surface and room air temperature.

  • PDF

막냉각량에 따른 축소형 칼로리미터의 열유속 특성에 관한 연구 (Film cooling Effects on Wall Heat Flux of a Subscale Calorimetric Combustion Chamber)

  • 김종규;임병직;서성현;한영민;김홍집;최환석
    • 한국추진공학회지
    • /
    • 제10권4호
    • /
    • pp.93-99
    • /
    • 2006
  • 막냉각량과 작동점의 변화에 따른 축소형 칼로리미터의 열유속 특성을 실험과 해석을 통해 알아보았다. 칼로리미터의 실린더 부분은 8개의 채널로, 노즐부는 11개의 채널로 구성되어 있다. 설계점 연소시험 시 막냉각량이 전체 연료유량의 10.5%일 때 노즐목에서의 열유속은 막냉각이 없을 때보다 약30% 감소하였다. 또한 막냉각이 없을 경우, 고압-고혼합비 조건 연소 시험 시 노즐목에서의 열유속이 설계점 시험 시보다 약 31% 증가함을 보였다.

원관 주위의 대류 열전달에 대한 복합 열전달 (Conjugated heat transfer on convection heat transfer from a circular tube in cross flow)

  • 이승홍;이억수;정은행
    • 설비공학논문집
    • /
    • 제10권5호
    • /
    • pp.523-534
    • /
    • 1998
  • The convection heat transfer on horizontal circular tube is studied as a conjugated heat transfer problem. With uniform heat generation in a cylindrical heater placed in a cross flow boundary condition, heat flow that is conducted along the wall of the heater creates a non-isothermal surface temperature and non-uniform heat flux distribution. In the present investigation, the effects of circumferential wall heat conduction on convection heat transfer are investigated for the case of forced convection around horizontal circular tube in cross flow of air and water. Non-dimensional conjugation parameter $ K^*$ which can be deduced from the governing energy differential equation should be used to express the effect of circumferential wall heat conduction. Two-dimensional temperature distribution$ T({\gamma,\theta})$ is presented. The influence of circumferential wall heat conduction is demonstrated on graph of local Nusselt number.

  • PDF

이중분사식 수소기관의 비정상 열부하 해석에 관한 연구 (A Study on Unsteady Thermal Loading of Hydrogen Engine with Dual Injection)

  • 위신환;김윤영;김홍준;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제12권2호
    • /
    • pp.147-155
    • /
    • 2001
  • To measure of thermal loading in the combustion chamber of hydrogen engine with dual injection, instantaneous wall-surface temperature and unsteady heat flux of the cylinder head are measured and analyzed. The maximum wall surface temperature is shown in direct injection region which has large heat supplied. Partial and spatial temperatures have slight deviation in transient region of injection, though injection method change suddenly. All of thermal characteristics such as instantaneous temperature, temperature swing and heat flux of hydrogen engine with dual injection are remarkably higher than those of gasoline engine. It means necessity of additional countermeasure of thermal loading.

  • PDF

부도체 방향복사면이 있는 무한 정사각관의 전도-복사열전달 (Conductive-Radiative Heat Transfer in an Infinite Square Duct with Dielectric Directional Property Wall)

  • 변기홍;임문혁
    • 대한기계학회논문집B
    • /
    • 제27권5호
    • /
    • pp.543-552
    • /
    • 2003
  • The effects of a directionally emitting and reflecting dielectric surface on the wall heat flux and medium temperature distribution are studied. The system is an infinite square duct enclosing an absorbing and emitting medium. The emissivity and reflectivity of opaque and gray wall vary with direction. Combined effect of conductive and radiative heat transfer is analyzed using finite difference and the direct discrete-ordinates method. The parameters under study are conduction to radiation parameter, optical depth, refractive index ratio. The results with directional and diffuse properties deviate each other when the conduction to radiation parameter is less than around 0.01. The wall heat flux differs fur optical thickness less than around 0.1. However, the medium temperature profiles differ for optical thickness greater than around 1. Deviations from diffuse property calculations are larger for hot wall with directional property than cold wall with directional property. As n increases from 1.5, the trend changes are observed fur refractive index ratio about n=6.10

수평평활관내의 비공비 혼합냉매의 응축에 대한 예측모델 (A Prediction Model for Condensation of Zeotropic Refrigerant Mixtures Inside a Horizontal Smooth Tube)

  • 이상무;박병덕
    • 설비공학논문집
    • /
    • 제13권4호
    • /
    • pp.262-270
    • /
    • 2001
  • This paper deals with a prediction method for the condensation of ternary refrigerant mixture inside a horizontal smooth tube. Based on some reliable assumptions, the governing equations for the local heat and mass transfer characteristics are derived, and the prediction for the condensation of ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a, including R407C, is carried out. The local values of vapor quality, thermodynamic states at bulk vapor, vapor-liquid interface and bulk liquid, mass flux etc. are obtained for a constant wall temperature and a constant wall heat flux conditions, and the effects of the composition of HFC32/HFC125/HFC134a on heat transfer characteristics are examined. The prediction result is also compared with experimental data for condensation of ternary refrigerant mixtures. The predicted wall temperature distribution has a similar trend with experimental data but the predicted local heat transfer coefficients are 20-30% higher than the experimental data.

  • PDF

난류유동 및 대류열전달에 대한 비선형 난류모형의 개발 (Development of a Nonlinear Near-Wall Model for Turbulent Flow and Heat Transfer)

  • 박태선;성형진
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1569-1580
    • /
    • 2001
  • A new nonlinear near-wall turbulence model is developed to predict turbulent flow and heat transfer in strongly nonequilibrium flows. The k-$\varepsilon$-f$\sub$${\mu}$/, model of Park and Sung$\^$(1)/ is extended to a nonlinear formulation. The stress-strain relationship is the thrid-order in the mean velocity gradients. The strain dependent coefficients are obatined from the realizability constraints and the singular behavior at large strains. An improved explicit heat flux model is proposed with the aid of Cayley-Hamilton theorem. This new model includes the quadratic effects of flow deformations. The near-wall asymptotic behavior is incorporated by modifying the f$\sub$λ/ function. The model performance is shown to be satisfactory.

Explicit Algebraic Stress/Heat-Flux 모형을 이용한 벽면가열이 높은 수직관 내의 열전달 감소에 대한 수치적 해석 (Assessment of Explicit Algebraic Stress/Heat-Flux Models for Reduction of Heat Transfer in a Vertical Pipe with Intense Heating)

  • 백성구;박승오
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1724-1733
    • /
    • 2003
  • This paper assesses the prediction performance of explicit algebraic stress and heat-flux models for reduction of heat transfer coefficient in a strongly-heated vertical tube. Two explicit algebraic stress models and four explicit algebraic heat-flux models are selected for assessment. Eight combinations of explicit algebraic stress and heat-flux models are used in predicting the turbulent gas flows with intense heating, which yields the significant property-variation. The results showed that the two combinations of GS-AKN and WJ-mAKN predicted the Nusselt number and the axial wall temperature variations well and that the predictions of Nusselt number with WJ-combinations spread in a wider range than those with Gs-combinations. WJ is the explicit algebraic stress model of Wallin and Johansson and GS is the model of Gatski and Speziale and that AKN is the explicit heat-flux model of Abe, Kondoh and Nagano and mAKN is the modified AKN.

극저온 저장용기의 내부압력 거동에 대한 비정상해석 (Transient Analysis of Pressure Behavior of Cryogenics in Closed Vessel)

  • 강권호;김길정;박영무
    • 에너지공학
    • /
    • 제5권1호
    • /
    • pp.19-27
    • /
    • 1996
  • 극저온 물질의 저장용기가 외부로부터 일정한 열유속을 받을 때 저장용기내의 압력상승을 해석하였다. 저장용기는 원통형 축대칭이고 윗벽과 아래벽은 단열되었으며 열유속은 옆벽에서 받는다. 유한차분법을 이용하여 저장용기내의 자연대류현상을 해석하였으며, 대상물질로는 산소, 수소 및 질소를 대상으로 하였다. 액체는 비압축성 유체, 기체는 virial 상태방정식을 만족하는 것으로 가정하였다. 기체의 2차 virial 계수는 Lennard-Jones 모형으로부터 구했다. 저장용기내의 압력상승에 미치는 주요한 인자는 외부열유속과 저장용기벽의 열용량 그리고 기체의 초기 부피비였으며, 이들중 가장 중요한 변수는 외부열유속이었다. 산소에 대해 기체를 이상기체를 가정했을 때와 virial 상태방정식을 만족하는 기체로 가정했을 때의 압력차이를 비교했다.

  • PDF