• Title/Summary/Keyword: Wall following

Search Result 677, Processing Time 0.027 seconds

Design Method of Steel Slit Shear Walls with Tapered Links for Structural Condition Assessment

  • He, Liusheng;Wu, Chen;Jiang, Huanjun
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.361-368
    • /
    • 2020
  • The authors developed a new type of steel slit shear wall (SSSW) having the function of structural condition assessment through visually inspecting the out-of-plane deformation of the designed tapered links subjected to lateral deformation. To facilitate its practical application, this paper studies how to design dimensions of the tapered links. Two parameters, the width-to-thickness ratio of the tapered links and steel yield stress, were studied. The performance of structural condition assessment was affected by both parameters with the width-to-thickness ratio being the controlling one. Through both numerical and experimental study, the designed width-to-thickness ratio of tapered links for different levels of structural condition assessment was established considering the effect of different steel grades used. In practice, the dimensions of tapered links can be determined following the design equation provided. Finally, a design procedure for the proposed SSSW system is provided.

Similarity of energy balance in mechanically ventilated compartment fires: An insight into the conditions for reduced-scale fire experiments

  • Suto, Hitoshi;Matsuyama, Ken;Hattori, Yasuo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2898-2914
    • /
    • 2022
  • When evaluating energy balance and temperature in reduced-scale fire experiments, which are conducted as an alternative to full-scale fire experiments, it is important to consider the similarity in the scale among these experiments. In this paper, a method considering the similarity of energy balance is proposed for setting the conditions for reduced-scale experiments of mechanically ventilated compartment fires. A small-scale fire experiment consisting of various cases with different compartment geometries (aspect ratios between 0.2 and 4.7) and heights of vents and fire sources was conducted under mechanical ventilation, and the energy balance in the quasi-steady state was evaluated. The results indicate the following: (1) although the compartment geometry varies the energy balance in a mechanically ventilated compartment, the variation in the energy balance can be evaluated irrespective of the compartment size and geometry by considering scaling factor F (∝heffAwRT, where heff is the effective heat transfer coefficient, Aw is the total wall area, and RT is the ratio of the spatial mean gas temperature to the exhaust temperature); (2) the value of RT, which is a part of F, reflects the effects of the compartment geometry and corresponds to the distributions of the gas temperature and wall heat loss.

Influence of strong ground motion duration on reinforced concrete walls

  • Flores, Camilo;Bazaez, Ramiro;Lopez, Alvaro
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.477-487
    • /
    • 2021
  • This study focuses on the influence of strong ground motion duration on the response and collapse probability of reinforced concrete walls with a predominant response in flexure. Walls with different height and mass were used to account for a broad spectrum of configurations and fundamental periods. The walls were designed following the specifications of the Chilean design code. Non-linear models of the reinforced concrete walls using a distributed plasticity approach were performed in OpenSees and calibrated with experimental data. Special attention was put on modeling strength and stiffness degradation. The effect of duration was isolated using spectrally equivalent ground motions of long and short duration. In order to assess the behavior of the RC shear walls, incremental dynamic analyses (IDA) were performed, and fragility curves were obtained using cumulative and non-cumulative engineering demand parameters. The spectral acceleration at the fundamental period of the wall was used as the intensity measure (IM) for the IDAs. The results show that the long duration ground motion set decreases the average collapse capacity in walls of medium and long periods compared to the results using the short duration set. Also, it was found that a lower median intensity is required to achieve moderate damage states in the same medium and long period wall models. Finally, strength and stiffness degradation are important modelling parameters and if they are not included, the damage in reinforced concrete walls may be greatly underestimated.

Hygrothermal Performance Improvement Plan of Standard Model for Rural Housing and Wooden Housing (농촌주택 및 목조주택 표준모델 구조체의 습·열 환경 성능 개선 방안)

  • Yoo, Dong-Wan;Lee, Tae-Goo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.4
    • /
    • pp.63-71
    • /
    • 2021
  • The purpose of this study was to investigate whether the standard models for rural housing and wooden housing model have performance for hygrothermal and to propose a way of improvement relevant to hygrothermal performance for those models. All of the models to be analyzed were found to have some parts that were absent of stability in terms of performance for hygrothermal. In the process of analyzing the causes and proposing improvement measures, the following conclusions were derived. Fist, The exterior surface of the structure should be composed of a structure with good moisture permeability, and for the interior surface, a variable vapor retarder paper should be applied in consideration of the reverse condensation phenomenon in summer. Second, in terms of performance for hygrothermal, applications of external insulation plaster finish to the exterior wall or of ventilation method using a rafter vent on the roof should be avoided. Third, a rain screen method with a ventilation layer should be applied to the exterior wall, and a method of constructing ventilation layer separated from the insulation layer with a vapor retarder paper should be applied to the roof. Fourth, the application of insulation materials having capillary action, such as wood fiber insulation board or cellulose insulation board, contributes to more stable performance for hygrothermal.

Effect of Stirrup Spacing of Columns and an Additional Wall other than Core Walls on the Seismic Performance of Piloti-type Buildings (코어 외 추가 벽체와 기둥 띠철근 간격이 필로티 건물의 내진성능에 미치는 영향)

  • Lee, Soo Jeong;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.171-181
    • /
    • 2024
  • For low-rise piloti-type buildings that suffered significant damage in the Pohang earthquake, the seismic performance of those designed by codes issued before and after the earthquake has been recently revised. This study started with the expectation that many of the requirements presented in the current codes may be excessive, and among them, the spacing of column stirrup could be relaxed. In particular, the recently revised design code of concrete structures for buildings, KDS 41 20 00, suggests that the column stirrup spacing is 1/2 of the minimum cross-sectional size or 200 mm, which is strengthened compared to KBC 2016, but relaxed than the current KDS, 41 17 00, which is 1/4 of the minimum size or 150 mm. As a result of the study, it was found that the target performance level was sufficiently satisfied by following the current standards and that it could be satisfied even if the relaxed spacing was followed. Therefore, the strict column stirrup spacing of KDS 41 17 00 could be relaxed if a wall other than core walls is recommended in the current guideline for the structural design of piloti-type buildings.

Radiotherapy in Locoregional Recurrent Breast Carcinoma (국소 재발된 유방암의 방사선치료)

  • Ha Sung Whan;Yang Mi Gyoung;Chung Woong Ki;Park Charn Il;Bang Yung Jue;Kim Noe Kyung;Choe Kuk Jin
    • Radiation Oncology Journal
    • /
    • v.6 no.2
    • /
    • pp.203-209
    • /
    • 1988
  • Thirty eight women with recurrent breast carcinoma involving chest wall and/or regional lymph nodes after surgery with or without systemic therapy were treated with radiation between 1979 and 1986. Among them, 5 patients were excluded from analysis because of incomplete treatment. The median follow up of survivors was 30 months (randged 1-79 months). Fifteen (45%)patients had their disease confined to the chest wall and eighteen patients had lymph node involvement as some of their locoregional recurrent disease. Within 36 months after the initial treatment, 87% of recurrences manifested themselves. All patients had radiotherapy to at least the site of involvement. In 8 patients, recurrent tumors were treated with complete excision followed by radiation. Of the remaining 25 patients,18 (72%) had complete response (CR) following radiotherapy. The actuarial 3-year survival of all patients following locoregional recurrence was 50% Three year survival was 24% in those 25 patients who had recurrences within 24 months of the initial treatment. For those 8 patients whose recurrences occurred after more than 24 month disease free interval, the 3-year survival was 100%. For those patients with recurrences confined to chest wall alone, 3-year survival was 57% The patients who had lymph node involvement as part of their locoregional recurrences had a 43% 3-year survival. The majority of them developed distant metastases. Those patients who had a CR showed 63% 3-year survival. On the other hand, 1 year survival was only 33% for those patients who had a less than CR. Three patients developed carcinoma of the contralateral breast following radiotherapy. Three year survival following locoregional recurrence was 40% for patients whose initial treatment for their primary breast carcinoma was surgery and adjuvant systemic therapy. For those patients whose primary breast carcinoma was treated by surgery alone, the 3-year survival following locoregional recurrence was 71%. In patients who had subsequent recurrence after radiotherapy, the actuarial survival was 25% at 2 years.

  • PDF

Analytical Simulation of Shake-Table Responses of a 1:5 Scale 10-story Wall-type RC Residential Building Model (1:5 축소 10층 벽식 RC 공동주택 모델의 진동대실험 응답에 대한 해석적 모사)

  • Lee, Han-Seon;Jeong, Da-Hun;Hwang, Kyung-Ran
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.617-627
    • /
    • 2011
  • This paper presents the results of analytical simulation of shake-table responses of a 1:5 scale 10-story reinforcement concrete(RC) residential building model by using the PERFORM-3D program. The following conclusion are drawn based on the observation of correlation between experiment and analysis; (1) The analytical model simulated fairly well the global elastic behavior under the excitations representative of the earthquake with the return period of 50 years. Under the design earthquake(DE) and maximum considered earthquake(MCE), this model shows the nonlinear behavior, but does not properly simulate the maximum responses, and stiffness and strength degradation in experiment. The main reason is considered to be the assumption of elastic slab. (2) Although the analytical model in the elastic behavior closely simulated the global behavior, there were considerable differences in the distribution of resistance from the wall portions. (3) Under the MCE, the shear deformation of wall was relatively well simulated with the flexural deformation being overestimated by 10 times that of experiment. This overestimation is presumed to be partially due to the neglection of coupling beams in modeling.

Residual Seismic Capacity Evaluation of RC Frames with URM Infill Wall Based on Residual Crack Width and Damage Class (잔류균열폭 및 손상도에 기초한 무보강 조적벽체를 갖는 RC 골조의 잔존내진성능 평가)

  • Choi, Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.41-50
    • /
    • 2009
  • Following an earthquake, the major concerns for damaged buildings are their safety/risk in the event of aftershocks, and thus a quantitative damage assessment must be performed in order to evaluate their residual seismic capacity and to identify necessary actions for the damaged buildings. Post-event damage evaluation is therefore as essential for the quick recovery of a damaged community as pre-event seismic evaluation and strengthening of vulnerable buildings. The objective of this study is to develop a post-earthquake seismic evaluation method for RC frames with URM infill wall for typical school buildings. For this purpose, full-scale, one-bay, single-story specimens having different axial loads in columns are tested under cyclic loadings. During the tests, residual crack widths, which can also be found in damaged buildings, are measured in order to estimate the residual seismic capacity from the observed damage. In this paper, the relationship between the measured residual crack width and the residual seismic capacity is discussed analytically and experimentally, and reduction factors are proposed to estimate the residual seismic capacity based on the observed damage level.

Study on the Crack Control Effect of Moist Curing Equipment in Side Wall of Building (습윤양생 장치를 이용한 아파트 측벽 균열제어에 관한 연구)

  • Kim, Dae-Geon;Lee, Dong-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.127-134
    • /
    • 2017
  • In this study, moist curing equipment was used in the exist gang-form system. By achieving sufficient spray curing, the quality of the concrete was improved and the cracking occurred in building's side wall was decreased. The following results could be made as the conclusion. For the compressive strength, all zones showed the similar results. Comparing with the zone without using moist curing equipment, the zone used moist curing equipment showed higher rebound hardness results. For the cracking, the zone utilized moist curing equipment showed the cracking averaged as 6.6 m and the zone without using moist curing equipment showed the cracking averaged as 10.3m. The effectof reducing cracking by utilizing moist curing equipment is about 36 %. Using moist curing equipment is considered as a good solution to reduce the cracking in the structure. Considering all the factors analysed, using moist curing equipment improved the quality of the concrete and decreased the cracking. When this equipment was used in the construction site, it is expected that the construction periodcan be shrunk and the ratio of defect caused by drying shrinkage can be decreased. In this research conditions, The 0.3mm sized moist curing equipment provided the most desirable results on concrete quality and preventing cracking.

A Study on the Mix Design and Quality Factors of the Combined High Flowing Concrete Using High Belite Cement

  • Kwon, Yeong-Ho
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.121-129
    • /
    • 2002
  • This study investigates experimentally into the design factors and quality variations having an effect on the properties of the combined high flowing concrete to be poured in the slurry wall of Inchon LNG in-ground receiving terminal. Especially, high belite cement and lime stone powder as cementitious materials and viscosity agent in order to improve self-compaction and hydration heat are used in this study. Water-cement ratio(W/C), fine aggregate volume ratio(Sr) and coarse aggregate volume ratio(Gv) as design factors of the combined high flowing concrete are applied to determine the optimum mix design proportion. Also quality variations for sensitivity test are selected items as followings. (1)Surface moisture(5cases) and (2)Fineness modulus of fine aggregate(5cases), (3)Concrete temperature(3cases), (4)Specific surface(3cases) and particle size of lime stone powder. As experimental results, water-cement ratio, fine and coarse aggregate volume ratio are shown as the optimum range 51%, 43% and 53% separately considering site condition of slurry wall. Also quality factors by sensitivity test should be controlled in the following ranges. (1) Surface moisture :to.67% and (2)Fineness modulus 2.6$\pm$0.2 of fine aggregate, (3)Concrete temperature l0-20t, (4) Specific surface 6,000$\textrm{cm}^2$/g and particle size 9.7$\pm$1.0${\mu}{\textrm}{m}$ of lime stone powder. Based on the results of this study, the optimum mix design proportion of the combined high flowing concrete are selected and poured successfully in the slurry wall of LNG in-ground tank.

  • PDF