• Title/Summary/Keyword: Wall barrier

Search Result 165, Processing Time 0.023 seconds

Prediction of Wrinkling in Micro R2R Forming and Its Improvement (마이크로 R2R 성형에서 주름의 발생 예측과 개선)

  • Min, B.W.;Seo, W.S.;Kim, J.B.;Lee, H.J.;Lee, S.H.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.42-47
    • /
    • 2011
  • Recently, with the merits of simplicity, ease of mass production and cost effectiveness, a roll-to-roll (R2R) forming process is tried to be employed in the manufacturing of the circuit board, barrier ribs and other electronic device. In this study, the roll-to-roll process for the forming of micro-pattern in electronic device panel is designed and analyzed. In the preliminary experiments, two major defects, i.e., crack near the dimple wall and wrinkling on outside region of dimple, are found. The study on the crack prevention is carried out in previous works by authors. In this study, the cause of wrinkling and modification of tooling to prevent the wrinkling is studied. The main cause of wrinkling is considered to be the uneven material flow along the rolling direction. To reduce or to retard the wrinkling initiation, a dummy shape on outside the pattern is introduced. From the finite element analysis results, it is shown that the dummy shape can reduce the uneven material flow significantly. Finally the effect of dimensions of the dummy shape on material flow is investigated and the optimum dimensions are found.

Housing Market and Opportunities for Wood Frame Housing in Korea (우리나라의 주택시장구조(住宅市長構造)와 목조주택개발(木造住宅開發))

  • Park, Moon-Jae;Kim, Wae-Jung;Han, Kap-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.45-52
    • /
    • 1991
  • To investigate opportunities for wood frame housing and to activate wood frame house construction, trends of construction activities. preference about housing, and building codes related to wood frame housing were discussed. And two models of wood frame house were developed and construction cost was analyzed to compare with comparative masonry houses. The results obtained were as follows: 1. While 77.8% of people prefer single-family houses, majority of people(74.9%), ironically, possess multi-family houses such as apartments Wood work cost was ratio of 4% of total building cost. while wood material cost accounted merely for 11 % out of total building material cost. 2. Building code was not major barrier to residential house at height under 13m. The building code regulated major structural member and family boder wall of multi-family house to be built with fire retardant material. 3. The proper wood frame house was analyzed of town house or villa type locating in suburban of big city with hot ondol system for the upper middle class. 4 There was no difference in construction cost between western style wood frame house and comparable masonry house, but construction cost for Korean style wood frame house is 27% higher than that of comparable masonry house. It was necessary to reduce materials and cost down by prefabrication technique for both style of wood frame house.

  • PDF

Determination of plastic concrete behavior at different strain rates to determine Cowper-Symonds constant for numerical modeling

  • Nateghi, Reza;Goshtasbi, Kamran;Nejati, Hamid Reza
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.227-237
    • /
    • 2020
  • Strain rate investigations are needed to calibrate strain-rate-dependent material models and numerical codes. An appropriate material model, which considers the rate effects, need to be used for proper numerical modeling. The plastic concrete cut-off wall is a special underground structure that acts as a barrier to stop or reduce the groundwater flow. These structures might be subjected to different dynamic loads, especially earthquake. Deformability of a structure subjected to dynamic loads is a principal issue which need to be undertaken during the design phase of these structures. The characterization of plastic concrete behavior under different strain rates is essential for proper designing of cut-off walls subjected to dynamic loads. The Cowper-Symonds model, as one of the most commonly applied material models, complies well with the behavior of a plastic concretes in low to moderate strain rates and will be useful in explicit dynamics simulations. This paper aims to present the results of an experimental study on mechanical responses of one of the most useful types of plastic concrete and Cowper-Symonds constant determination procedures in a wide range of strain rate from 0.0005 to 107 (1/s). For this purpose, SHPB, uniaxial, and triaxial compression tests were done on plastic concrete samples. Based on the results of quasi-static and dynamic tests, the dynamic increase factors (DIF) of this material in different strain rates and stress state conditions were determined for calibration of the Cowper - Symonds material models.

Cooling Performance Analysis of Regeneratively Cooled Combustion Chamber (재생냉각 연소실의 냉각성능 해석)

  • Cho, Won-Kook;Seol, Woo-Seok;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.67-72
    • /
    • 2004
  • A regenerative cooling system has been designed through empirical 1-D analysis for a liquid rocket engine of 30-ton-level thrust. The hot-gas-side wall temperature from 1-D analysis shows 100K difference compared to 3D CFD analysis. Two variations of design with same cooling performance are suggested for different maximum channel widths i.e., 4mm and 2mm. The coolant pressure drop of the latter design is higher by 20%. The maximum liner temperature is about 700K when TBC and the thermal resistance of carbon deposit are considered. So film cooling is recommended to increase the cooling capacity as the present cooling capacity is insufficient

Influence of spacing between buildings on wind characteristics above rural and suburban areas

  • Kozmar, Hrvoje
    • Wind and Structures
    • /
    • v.11 no.5
    • /
    • pp.413-426
    • /
    • 2008
  • A wind tunnel study has been carried out to determine the influence of spacing between buildings on wind characteristics above rural and suburban type of terrain. Experiments were performed for two types of buildings, three-floor family houses and five-floor apartment buildings. The atmospheric boundary layer (ABL) models were generated by means of the Counihan method using a castellated barrier wall, vortex generators and a fetch of roughness elements. A hot wire anemometry system was applied for measurement of mean velocity and velocity fluctuations. The mean velocity profiles are in good agreement with the power law for exponent values from ${\alpha}=0.15$ to ${\alpha}=0.24$, which is acceptable for the representation of the rural and suburban ABL, respectively. Effects of the spacing density among buildings on wind characteristics range from the ground up to $0.6{\delta}$. As the spacing becomes smaller, the mean flow is slowed down, whilst, simultaneously, the turbulence intensity and absolute values of the Reynolds stress increase due to the increased friction between the surface and the air flow. This results in a higher ventilation efficiency as the increased retardation of horizontal flow simultaneously accompanies an intensified vertical transfer of momentum.

Compressibility and hydraulic conductivity of calcium bentonite treated with pH-responsive polymer

  • Choo, Hyunwook;Choi, Youngmin;Kim, Young-Uk;Lee, Woojin;Lee, Changho
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.329-337
    • /
    • 2020
  • Polyacrylamide (PAM) possesses high water absorption capacity and a unique pH-dependent behavior that confer large potential to enhance the engineering performance of clays. In this study, calcium bentonite was treated with a nonionic PAM. Flexible-wall permeability test and the consolidation test were performed at different pH values to evaluate the effects of PAM treatment on the hydraulic and consolidation properties. Test results demonstrate that index properties are affected by the adsorbed PAM on clay surface: a decrease in specific gravity, a decrease in net zeta potential, and an increase in liquid limit are observed due to the PAM treatment. At a given pH, the compressibility of the treated clay is greater than that of the untreated clay. However, the compression indices of untreated and treated clays can be expressed as a single function of the initial void ratio, regardless of pH. Hydraulic conductivity is reduced by PAM treatment about 5 times at both neutral and alkaline pH conditions under similar void ratios, because of the reduction in size of the water flow channel by PAM expansion. However, at acidic pH, the hydraulic conductivity of the treated clay is slightly higher than the untreated clay. This reflects that the treated bentonite with PAM can be beneficially used in barrier system for highly alkaline residues.

A Study on Noise Reduction of Railway Noise by Noise Barrier (방음 터널 설치에 따른 소음 저감 효과 연구)

  • Kim, Da rae;Kim, Tae min;Kim, Jeung Tae;Son, Jeung gon;Park, Gwang hyeon;Ryu, Raeeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.125-130
    • /
    • 2014
  • High speed railroad car and high-rise apartment with development of railway technology cause different problems of noise contrary to the previous generation. It is the most efficient noise reduction countermeasure but we studied that is the way on noise propagation with sound proof wall or sound proof tunnel around railroad. But if it were railroad on bridge, additional cost which is more expensive than installing one on the ground is needed. So sound insulation material considering reducing weight of recent soundproof facilities must be selected. It is in this study that predicted and analyzed acoustical and structural effect for noise reduction by installing soundproof tunnel. If it were departmentalized into additional study, could be able to expect noise reduction effect of sound proof tunnel establishment on the bridge.

  • PDF

Geotechnical challenges at waste landfill sites in Japan

  • Katsumi, Takeshi;Inui, Toru;Kamon, Masashi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.172-185
    • /
    • 2009
  • This paper presents case histories and research projects related to geotechnical challenges at waste landfill sites in Japan. Due to the limitation of inland space available to waste disposal, coastal landfills and the associated containment systems are important considerations, particularly for metropolitan areas. Experimental works on heavy metals mobility using a large column to simulate the redox potential at the coastal landfill sites are introduced. After the closure of landfill sites, they are expected to be utilized as new land space, since new space is difficult to find in urban area. In the redevelopment of such closed landfill sites, there are possibilities of environmental risks, such as generation of toxic gas and leachate, differential settlement of the waste layer, damage to the lining system. Whether the pile installation through the clay layer acting as a landfill bottom barrier is environmentally acceptable or not has been a great concern in the redevelopment of closed waste landfill sites in particular coastal landfill sites. An analytical study to evaluate the cost-effective remedial option for a dumped waste site located along a landslide area, where cut-off wall keyed into the aquitard might elevate groundwater level and thus may not be employed, is presented.

  • PDF

A Study on the Behavior Characteristics of Tsunami Damper for the Nuclear Power Plant (원자력 발전소용 쓰나미 댐퍼의 거동특성에 관한 연구)

  • Seo, Ji-Hwan;Kim, Byung-Tak;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.106-112
    • /
    • 2014
  • This study presents the mechanical behavior of a ventilating window (a tsunami damper) on the building wall of a nuclear power plant. The window, which is under development, is used to ventilate a machinery room and the building under normal conditions, but it also provides a safety barrier for critical equipment against a tsunami caused by an earthquake. A finite element analysis was conducted to investigate the deflection and the stress distribution of the window under given loading conditions. With symmetry, a one-quarter portion of one window was modeled, and the pressure due to a great tide is assumed to be 7 bar. A structural analysis of the assembled frame, composed of a blade and casing, was also conducted using contact conditions to find the stress and strain configurations caused by the applied pressure.

Effects of Permeability Change of Soil-Bentonite Mixture due to Seawater on Seawater Intrusion (해수로 인한 흙-벤토나이트 혼합물의 투수계수 변화가 해수유입에 미치는 영향)

  • Ahn, Tae-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.81-89
    • /
    • 2001
  • Soil-bentonite mixture is often used for barrier wall to prevent seawater intrusion. In this study, the effect of seawater on the permeability of soil-bentonite mixture is examined, and the effect of permeability change on the seawater intrusion is investigated. Seawater intrusion in coastal areas was modeled using a finite element method. Seawater intrusion in the seawater-contaminated zone was determined by considering the hydraulic conductivity changes using the residual flow procedure (RFP) in the simulation model. Steady state and unsteady state conditions with variations in ground water levels in an inland area were investigated. The interface between fresh water and seawater, found by the proposed method, was located lower at the seawater side and the level at the fresh water side is higher than those by conventional methods.

  • PDF