The relations between wall pressure fluctuations and near-wall streamwise vortices are investigated in a spatially-developing turbulent boundary layer using the direct numerical simulation. The power spectra and two-point correlations of wall pressure fluctuations are presented to validate the present simulation. Emphasis is placed on the identification of the correlation between wall pressure fluctuations and streamwise vorticities. It is shown that wall pressure fluctuations are directly linked with the upstream streamwise vortices in the buffer region of the turbulent boundary layer. The maximum correlation occurs with the spanwise displacement from the location of wall pressure fluctuations. The conditionally-averaged vorticity field and the quadrant analysis of Reynolds shear stress indicate that the sweep events due to streamwise vortices generate positive wall pressure fluctuations, while negative wall pressure fluctuations are created beneath the ejection events and vortex cores. The instantaneous flow field and time records reveal that the rise of high wall pressure fluctuations coincide with the passages of the upstream streamwise vortices.
The ASME B3l.4〔1〕and B3l.8 〔2〕codes use the thin wall formula to predict hoop stress in a pipe. To account for the external pressure, the above codes simply subtract the external pressure from the internal pressure. The thin wall formula using this differential pressure does not give the same hoop stress as the thick wall formula. This paper proposes an improved equation to predict pipe hoop stress subjected to both internal and external pressure. Compared to the conventional thin wall formula, the improved formula has additional terms, which improve the agreement with the thick wall formula and account for external pressure. The improved formula is less conservative than the conventional thin wall formula, but slightly more conservative than the thick wall formula. The formula is simpler and easier to use than the thick wall formula and will save pipe material cost as well as installation cost compared to using the conventional thin wall formula. The savings will increase as the water depth increases.
The changes in earth pressure and ground settlement due to underground excavation near an existing retaining wall were studied experimentally according to the separation distance between the underground excavation and the retaining wall. In addition, this study attempted to experimentally prove that the arching phenomenon occurred during the construction of the underground space. A model tank having 120 cm in length, 160 cm in height, and 40 cm in width was manufactured to simulate underground excavation through the use of five separated base wall bodies. The variation of earth pressure on the retaining wall was measured according to the underground excavation phase through the use of 10 separated right wall bodies. The results showed that the earth pressure on the retaining wall was changed by the lowering of the first base bottom wall; however, the earth pressure was not changed significantly by the lowering of the third base bottom wall, since the third base wall had sufficient separation distance from the retaining wall. Lowering of the first base wall induced a decrease in the earth pressure in the lower part of the retaining wall; in contrast, lowering of the first base wall induced an increase in the earth pressure in the middle part of the retaining wall, proving the arching effect experimentally. It is necessary to consider the changes in earth pressure on the retaining wall in designing earth retaining structures for sections where the arching effect occurs.
The safety of a structure can be improved by applying the three dimensional passive earth pressure. Because the three dimensional passive earth pressure is much larger than the two dimensional passive earth pressure and it is determined by the size(width B and height H) and the wall frictional angle of the resistant wall. Therefore, the three dimensional passive resistance behavior was studied through the model tests in sandy ground, where the size of the resistant wall and the wall frictional angle were varied. The results show that three dimensional passive earth pressure is 1.1∼3.4 times larger than that of the two dimensional value depending on the wall size and the wall friction.
Segmental Grid Retaining Wall is one of the segmental grid retaining walls using
headers and stretchers to establish the framework of the wall In this method, grids formed by the intersection of headers and stretchers are generally filled with the gravel to maintain the weight of the wall Therefore, the construction can be carried out with higher speed and much economically when compared with the concrete retaining wall Furthermore, it has high drain capacity, and environmentally friendly aspects also have been pointed out because the possibility of the planting at the front of the wall However, in the segmental grid retaining wall method, the relative movement between the individual headers and stretchers was generally recognized, and stress redistribution in
the gravel filling was also observed when subjected to the external loading and self-weight of filling Therefore, it has been thought that the distribution of the earth pressure in the segmental grid retaining wall system differ from that of the concrete retaining wall In this study, the surcharge tests using the scaled model segmental grid retaining wall was carried out to observe the distribution of the earth pressure in the segmental grid retaining wall The earth pressure was measured in the six specified height of wall, and the distribution of the pressure was analyzed. Furthermore, the earth pressure by computation or by the test using the concrete retaining wall was also considered to make comparison
Crib wall은 헤더와 스트레처를 사용하여 옹벽의 골조를 축조하는 격자형 조립식 옹벽공법의 일종이다. 이 공법에서는 부재의 교차에 의해 생긴 격자 안에 자갈로 채움을 실시하여 옹벽의 중력을 유지하게 된다. 따라서 일반 옹벽에 비해 시공속도가 빠르며 경제적이다. 더불어, 옹벽의 배수 능력이 뛰어나며, 전면에 식생이 가능하다는 점을 들어 환경친화적인 장점도 강조되어 왔다. 그러나 Crib wall 시스템에서는 개별 부재 사이의 상대적인 움직임을 허용하며 채움재의 자중이나 외부하중에 의해 채움재에 응력 재분포가 발생한다. 이 때문에 콘크리트 옹벽과 같은 일체식 옹벽과는 토압의 분포에 있어 차이가 있다는 사실이 인식되어 왔다. 따라서 본 연구에서는 Crib wall의 토압특성을 관찰하기 위하여 축소된 모형을 이용한 재하시험을 실시하였다. 토압 특성은 6개의 특정한 높이에서 계측되었으며 이를 이용하여 위치별 토압의 분포 형태를 예측하였다. 시험결과는 기존의 이론식 및 일체식 옹벽과 비교되었으며 차이점에 대해 고찰하였다.
A direct numerical simulation of a spatially-developing turbulent boundary layer is performed to examine the characteristics of wall pressure fluctuations after the sudden application of wall blowing or suction. The uniform blowing or suction is given by the wall-normal velocity through a spanwise slot at the wall. The response of wall pressure fluctuations to uniform blowing or suction is analyzed by computing the turbulence statistics and frequency spectra. It is found that wall pressure fluctuations are more affected by blowing than by suction. The large elongated structure of wall pressure fluctuations is observed near the maximum location of $(p_w)_{rms}$ for blowing. The convection velocities for blowing increase with increasing the streamwise location after the slot. For both blowing and suction, the small scale of wall pressure fluctuations reacts in a short downstream distance to the spanwise slot, whereas the large scale recovers slowly in a farther downstream.
The magnitude and distribution of earth pressure on the excavation wall in jointed rock mass were examined by considering different wall permeability conditions as well as rock types and joint inclination angles. The study was numerically extended based on a physical model test (Son & Park, 2014), considering rock-structure interactions with the discrete element method, which can consider various characteristics of rock joints. This study focused on the effect of the permeability condition of excavation wall on the earth pressure in jointed rock masses under a groundwater condition, which is important but has not been studied previously. The study results showed that the earth pressure was highly influenced by wall permeability as well as rock type and joint condition. Earth pressure resulted from the study was also compared with Peck's earth pressure in soil ground, and the comparison clearly showed that the earth pressure in jointed rock mass can be greatly different from that in soil ground.
This study performed burst tests using real-scale pipe elbow containing simulated local wall-thinning to evaluate the effects of circumferential thinning angle and bending load on the failure pressure of wall-thinned elbow. The tests were carried out under the loading conditions of internal pressure and combined internal pressure and bending loads. Three circumferential thinning angles, ${\theta}/{\Pi}=0.125,\;0.25,\;0.5$, and different thinning locations, intrados and extrados, were considered. The test results showed that the failure pressure of wall-thinned elbow decreased with increasing circumferential thinning angle for both thinning locations. This tendency is different from that observed in the wall-thinned straight pipe. Also, the failure pressure of intrados wall-thinned elbow was higher than that of extrados wall-thinned elbow with the same thinning depth and equivalent thinning length. In addition, the effect of bending moment on the failure pressure was not obvious.
Based on limit equilibrium principles, this study presents a theoretical derivation of a new analytical formulation for estimating magnitude and lateral earth pressure distribution on a retaining wall subjected to seismic loads. The proposed solution accounts for failure wedge inclination, unit weight and friction angle of backfill soil, wall roughness, and horizontal and vertical seismic ground accelerations. The current analysis predicts a nonlinear lateral earth pressure variation along the wall with and without seismic loads. A parametric study is conducted to examine the influence of various parameters on lateral earth pressure distribution. Findings reveal that lateral earth pressure increases with the increase of horizontal ground acceleration while it decreases with the increase of vertical ground acceleration. Compared to classical theory, the position of resultant lateral earth force is located at a higher distance from wall base which in turn has a direct impact on wall stability and economy. A numerical example is presented to illustrate the computations of lateral earth pressure distribution based on the suggested analytical method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.