• Title/Summary/Keyword: Wall Interference

Search Result 87, Processing Time 0.027 seconds

Numerical Investigation for the Optimization of Two-Dimensional Adaptive Wall (2차원 적응벽면의 최적화에 관한 수치적 연구)

  • Chang B. H.;Chang K. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.134-141
    • /
    • 1996
  • Wall interference is one of the major obstacles to increase the model size and data accuracy. There have been many treatments for wall interference including interference correction and adaptive wall test section. Recently, two-flexible-walled adaptive wall test section is concluded adequate for three-dimensional test. But proper location of target line and pressure holes are critical to its success. In this study, a new adaptive algorithm which dispenses target line and dependency of pressure hole distribution is suggested. The wind tunnel and free air tests are simulated by the numerical computation of Euler equations. The optimum wall shape is achieved by two variable optimization which is composed of two base streamlines. The wall interference is reduced well in the optimized result which is not sensitive to the base streamlines.

  • PDF

Navier-Stokes Analysis of Pitching Delta Wings in a Wind Tunnel

  • Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.28-38
    • /
    • 2001
  • A numerical method for the assessment and correction of tunnel wall interference effects on forced-oscillation testing is presented. The method is based on the wall pressure signature method using computed wall pressure distributions. The wall pressure field is computed using unsteady three-dimensional full Navier-Stokes solver for a 70-degree pitching delta wing in a wind tunnel. Approximately-factorized alternate direction implicit (AF-ADI) scheme is advanced in time by solving block tri-diagonal matrices. The algebraic Baldwin-Lomax turbulence, model is included to simulate the turbulent flow effect. Also, dual time sub-iteration with, local, time stepping is implemented to improve the convergence. The computed wall pressure field is then imposed as boundary conditions for Euler re-simulation to obtain the interference flow field. The static computation shows good agreement with experiments. The dynamic computation demonstrates reasonable physical phenomena with a good convergence history. The effects of the tunnel wall in upwash and blockage are analyzed using the computed interference flow field for several reduced frequencies and amplitudes. The corrected results by pressure signature method agree well with the results of free air conditions.

  • PDF

UNSTEADY WALL INTERFERENCE EFFECT ON FLOWS AROUND AN OSCILLATING AIRFOIL IN CLOSED TEST-SECTION WIND TUNNELS (폐쇄형 풍동 시험부내의 진동하는 익형 주위 유동에 대한 비정상 벽면효과 연구)

  • Kang Seung-Hee;Kwon Oh Joon;Hong Seung-Kyu
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.60-68
    • /
    • 2005
  • For study on the unsteady wall interference effect, flows around a forced oscillating airfoil in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The Spalart-Allmaras one-equation model is employed for the turbulence effect. The computed results of the oscillating airfoil having a thin wake showed that the lift curve slope is increased and the magnitude of hysteresis loop is reduced by the interference effects. Since the vortex around the airfoil is generated and convected downstream faster than the free-air condition, the phase of lift, drag and pitching moment coefficients was shifted. The pressure on the test section wall shows harmonic terms having the oscillating frequency contained in the wail effect.

Unsteady Wall Interference Effect on Flows around a Circular Cylinder in Closed Test-Section Wind Tunnels (폐쇄형 풍동 시험부내의 원형 실린더 유동에 대한 비정상 벽면효과 연구)

  • Kang, Seung-Hee;Kwon, Oh-Joon;Hong, Seung-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.1-8
    • /
    • 2005
  • For study on the unsteady wall interference effect, flows around a circular cylinder in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The computed results showed that the unsteady pressure gradient over the cylinder is enhanced by the wall interference, and as a result the fluctuations of lift and drag are augmented. The drag is further increased because of the lower base pressure. The vortex shedding frequency is also increased by the wall interference. The pressure on the test section wall shows the harmonics having the shedding frequency contained in the wall effect.

Numerical Investigation of the Unsteady Adaptive Wall Models in the Unsteady Wind Tunnel Testing (비정상유동 실험시의 비정상 적응벽면 모델의 수치적 연구)

  • Chang Byeong-Hee;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.219-224
    • /
    • 1995
  • The adaptive wall test section has distinct advantage over the other devices for reduction of wall interference in the wind tunnel testing. For two-dimensional steady flows the wall adaption strategy has been well established and, in some extent, has been effectively applied to three-dimensional steady flows. For unsteady testing, the wall adaptation is conceptually possible but has never been realized in the wind tunnel experiment. In this study, relatively simple adaptive wall models have been proposed and evaluated through numerical tests. The effect of Mach number, frequency, and amplitude of pitching oscillation on the wall interference reduction has been also studied.

  • PDF

A Study on Wall Interference Effect Around the Wind Turbine Airfoil (풍력터빈 에어포일 주위의 벽면효과에 관한 연구)

  • Cho, Hwan-Kee;Kang, Seung-Hee;Ryu, Ki-Wahn;Lee, Jun-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.485-491
    • /
    • 2012
  • The wall interference effects around the wind-turbine airfoil are experimentally investigated at low Reynolds numbers in a closed test-section wind tunnel. The test is performed at free-stream velocities from 10 to 31 m/s, which correspond to Reynolds numbers ranging from $1.5{\times}10^5$ to $4.6{\times}10^5$ based on chord of the airfoil. The blockage-area ratios, which is the ratio of the chord to the test-section width, are 27.8%, 38.5%, 41.7%, 45.5%, and 55.6%. The test results for the airfoil show that the transition point on the airfoil surface tends to move backward due to wall interference. The wall pressures for an adequate interference correction by a measured-boundary-condition method are desirable more than three times region of the chord before and after around the reference center.

Control of Plume Interference Using a Porous Extension (다공확장벽을 이용한 플룸간섭의 제어)

  • Young-Ki Lee;Heuy-Dong Kim
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.95-98
    • /
    • 2003
  • The physics of the plume-induced shock and separation particulary at a high plume to exit pressure ratio and supersonic speeds up to Mach 3.0 with aid without a passive control method, porous extension, were studied using computational techniques. Mass-averaged Navier-Stokes equations with the RNG k-$\varepsilon$ turbulence model were solved using a fully implicit finite volume scheme and a 4-stage Runge-Kutta method. The courol methodology for plume-afterbody interactions is to use a perforated wall attached at either the nozzle exit or the edge of the missile base. The Effect of porous wall length on plume interference is also investigated. The computational results show the main effect of the porous extension on plume-afterbody interactions is to in the plume from strongly underexpanding during a change in flight conditions. With control, a change in porous extension length has no significant effect on plume interference.

  • PDF

Wind Tunnel Wall Interference Correction Method for Helicopter Rotor Tests with Closed and open Test Sections (헬리콥터 로터의 폐쇄형 및 개방형 풍동시험 벽면효과 보정기법 연구)

  • Lee, Hyeon-Jung;Jang, Jong-Youn;Lee, Seung-Soo;Kim, Beom-Soo;Song, Keun-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.621-627
    • /
    • 2008
  • Aerodynamic data measured in a wind tunnel has inevitable errors due to the presence of the wind tunnel walls. These unwanted interference effects must be corrected for the wall interference free aerodynamic data. Streamline curvature effects are caused by straightening of streamlines due to wind tunnel walls. Classical Glauert's correction method that is a standard method for fixed wing aircraft is not suitable for rotary wing aircraft. In this paper, Heyson's correction method of which wake model is compatible with rotors is used to correct the rotor shaft angle as well as the dynamic pressure. The results of Heyson's method are compared with Glauert's correction method.

A Study on the Evaluation and Countermeasure of Electromagnetic Interference due to Buildings in TV Frequency Band (건축물에 의한 TV주파수대 전자파장해의 평가 및 대책에 관한 연구)

  • 박재석;김동일;박연준;이창우
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.1
    • /
    • pp.55-62
    • /
    • 1998
  • In this paper, we have performed a numerical calculation of the scattered electromagnetic field around the building to evaluate electromagnetic interference caused by the building in the TV frequency band. The relations between the exposed concrete area of a building wall and the magnitude of the reflected wave have been examined in the case that the electroagnetic wave absorbers partially cover the building wall. From the obtained scattered electromagnetic field, we have calculated the DU radio and the required reflection loss of the electromagnetic wave absorbers which attached on the building wall to protect TV ghost.

  • PDF