• Title/Summary/Keyword: Wall Impinging

Search Result 181, Processing Time 0.026 seconds

Measurement of the local heat transfer coefficient on a convex hemispherical surface with round oblique impinging jet (볼록한 표면위에 분사되는 원형경사충돌제트의 국소열전달계수 측정에 관한 연구)

  • 최형철;이세균;이상훈;임경빈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.846-854
    • /
    • 1999
  • Measurements of the local heat transfer coefficients were made on a hemispherically convex surface with a round oblique impinging jet. The liquid crystal transient method was used for these measurements. This method, which is a variation on the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystal for the surface temperature measurements. The Reynolds number used was 23000 and the nozzle-to-surface distance was L/d=2, 4, 6, 8, and 10 and the jet angle was $\alpha$=$0^{\circ}\; 15^{\circ}\;30^{\circ}C\; and \;40^{\circ}C$. In the experiment, the Nusselt number at the stagnation point decreases as the jet angle increases and has the maximum value for L/d=6. The X-axis Nusselt number distributions exhibit Secondary maxima at $0^{\circ}C\re $\alpha$\re 15^{\circ}C, L/d\le6$ for X/d<0(upstream) and at $0^{\circ}C\re $\alpha$40^{\circ}C,\;L/d\le4\;and\; at\; 30^{\circ}C\re $\alpha$$\leq$40^{\circ}C,\;L/d\le 6 $for X/d>0(downstream). The secondary maxima occurs at long distance from the stagnation point as the jet angle increases or the nozzle-to-surface distance decreases. The Y-axis Nusselt number distributions exhibit secondary maxima at Y/d=$\pm$2 for $0^{\circ}C\le a\le30^{\circ}C\; and\; L/d\le4, and \;for\;$\alpha$=40^{\circ}C$and L/d=2. The displacement of the maximum Nusselt number from the stagnation point increases as the jet angle increases or the nozzle-to-surface distance decreases and the maximum distance is about 0.67 times of the nozzle diameter. The ratio of the maximum Nusselt number to the stagnation Nusselt number increases as the jet angle increases.

  • PDF

A Study on the Shell Wall Thinning by Flow Acceleration Corrosion and Mitigation Plan and Design Modification of a Feedwater Heater Impingement Baffle (유동가속부식으로 인한 급수가열기 동체 감육현상 규명과 완화 방안 및 충격판 설계개선에 관한 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kim, In-Tae
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.83-93
    • /
    • 2010
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle inside feedwater heater installed downstream of the turbine extraction stream line. At that point, the extract steam from the turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows to reverse direction after impinging the impingement baffle, the shell wall of feedwater heaters may be affected by flow-accelerated corrosion. In this paper, to compare degree of shell wall thinning mitigation rate to squared type with mitigation rate of other type baffle plate, four different types of impingement baffle plate-squared, curved, mitigating type and multi-hole type-applied inside the shell. With these comparison data, this paper describes operation of experiments and numerical analysis which is composed similar condition with real feed water heater. And flow visualization is operated for verification of experiments and numerical analysis. In conclusion, this study shows that mitigating type and multi-hole type baffle plate are more effective than other baffle plate about prevention of pressure concentration and pressure value decrease.

Shell Wall Thinning and Mitigation Plan and Design Modification of a Feedwater Heater Impingement Baffle (급수가열기 동체 감육 현상과 완화 방안 및 충격판 설계개선)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Park, Sang-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.55-63
    • /
    • 2010
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle inside feedwater heater installed downstream of the turbine extraction stream line. At that point, the extract steam from the turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows to reverse direction after impinging the impingement baffle, the shell wall of feedwater heaters may be affected by flow-accelerated corrosion. In this paper, to compare degree of shell wall thinning mitigation rate to squared type with mitigation rate of other type baffle plate, three different types of impingement baffle plate-squared, curved and mitigating type-applied inside the shell. With these comparison data, this paper describes operation of experiments and numerical analysis which is composed similar condition with real feed water heater. And flow visualization is operated for verification of experiments and numerical analysis. In conclusion, this study shows that mitigating type baffle plate is more effective than other baffle plate about prevention of pressure concentration and pressure value decrease.

Effect of the Radical Loss Control by the Chamber Wall Heating on the Highly Selective $SiO_2$ etching (식각 용기 가열에 의한 라디칼 손실 제어가 고선택비 산화막 식각에 미치는 영향)

  • 김정훈;이호준;주정훈;황기웅
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.2
    • /
    • pp.169-174
    • /
    • 1996
  • The applications of the high density plasma sources to the etching in semiconductor fabrication process are actively studied because of the more strict requirement from the dry etching process due to shrinking down of the critical dimension. But in the oxide etching with the high density plasma sources, abundant fluorine atoms released from the flurocarbon feed gas make it difficult to get the highly selective $SiO_2/Si$ etching. In this study, to improve the $SiO_2/Si$ etch selectivity through the control of the radical loss channels, we propose the wall heating , one of methods of controlling loss mechanisms. With appearance mass spectroscopy(AMS) and actinometric optical emission spectroscopy(OES), the increase of both radicals impinging on the substrate and existing in bulk plasma, and the decrease of the fluorine atom with wall temperature are observed. As a result, a 40% improvement of the selectivity was achieved for the carbon rich feed gas.

  • PDF

Development of a general purpose thermo/fluid flow analysis program NUFLEX with heat transfer analy sis model of impinging liquid film (충돌분무 액막의 열전달 해석모델을 고려한 범용 열/유체 프로그램 NUFLEX의 개발)

  • Kim, Hyun-Jeong;Ro, Kyoung-Chul;Ryou, Hong-Sun;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.71-74
    • /
    • 2008
  • NUFLEX is a general purpose thermo/fluid flow analysis program which has various physical models including spray. In NUFLEX, spray models are composed of breakup and collision models of droplet. However, in case of diesel engine, interaction between wall-film and impingement model considering heat transfer is not coded in NUFLEX. In this study, Lee & Ryou impingement & wall-film model considering heat transfer is applied to NUFLEX. For the verification of this NUFLEX program, numerical results are compared with experimental data. Differences of film thickness and radius between numerical results and experimental data are within 10% error range. The results show that NUFLEX can be used for comprehensive analysis of spray phenomena.

  • PDF

Modeling of Diesel Spray Impingement on a Flat Wall

  • Lee, Seong-Hyuk;Ryou, Hong-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.796-806
    • /
    • 2000
  • To understand the transient behavior of droplets after impingement in a diesel engine, a numerical model for diesel sprays impinging on a flat wall is newly developed by the proposition of several mathematical formulae to determine the post-impingement characteristics of droplets. The new model consists of three representative regimes such as rebound, deposition and splash. The gas phase is modeled in terms of the Eulerian conservation equations, and the dispersed phase is calculated using a discrete droplet model. To validate the new model, the calculated results are compared with several experimental data. The results show that the new model is generally in good agreement with the experimental data. Therefore, it is thought that the new model is acceptable for the prediction of transient behavior of wall sprays.

  • PDF

Development and Application of a New Spray Impingement Model Considering Film Formation in a Diesel Engine

  • Ryou, Hong-Sun;Lee, Seong-Hyuk;Ko, Gwon-Hyun;Hong, Ki-Bae
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.951-961
    • /
    • 2001
  • The present article presents an extension to the computational model for spray/wall interaction and liquid film processes that has been dealt with in the earlier studies (Lee and Ryou, 2000a). The extensions incorporate film spread due to impingement forces and dynamic motion induced by film inertia to predict the dynamic characteristics of wall films effectively. The film model includes the impingement pressure of droplets, tangential momentum transfer due to the impinging droplets on the film surface and the gas shear force at the film surface. Validation of the spray/wall interaction model and the film model was carried out for non-evaporative diesel sprays against several sources of experimental data. The computational model for spray/wall interactions was in good agreement with experimental data for both spray radius and height. The film model in the present work was better than the previous static film model, indicating that the dynamic effects of film motion should be considered for wall films. On the overall the present film model was acceptable for predication of the film radius and thickness.

  • PDF

Pressure Loss in the Discharge Flow Path from a Diffuser to a wall (디퓨저에서 벽면으로의 방출유로에서의 압력손실)

  • Lee, J.;Kim, Y.I.;Kim, S.H.;Lee, D.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.517-522
    • /
    • 2001
  • The exit edges of a diffuser are smoothly rounded, and a wall is located perpendicularly to a diffuser exit. The fluid is discharged towards the radial direction of a diffuser after impinging against a wall from a diffuser. In this flow path, pressure loss coefficients have been calculated by the variables of Reynolds number at a diffuser inlet, distance between a diffuser exit and a wall, and turbulence models. As a result, it was calculated that $h/D_0$ ratio between $0.35\sim0.4$ has the minimum pressure loss coefficient regardless of Reynolds number and turbulence models. It was also found that in case of the flow with relatively high Reynolds number at a diffuser inlet, the pressure loss coefficients by RNG $k-\varepsilon$ model have a tendency to be near to those by standard $k-\varepsilon$ model at small ratio of $h/D_0$, but to those by RSM at large ratio.

  • PDF

A Study on the Relief of Shell Wall Thinning of High pressure Feedwater Heater (고압형 급수가열기 동체 감육 완화에 관한 연구)

  • Kim, Hyung-Joon;Park, Sang-Hoon;Seo, Hyuk-Ki;Kim, Kyung-Hoon;Hwang, Kyung-Mo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2664-2669
    • /
    • 2008
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damange, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed downstream of the high pressure turbine extraction stream line- inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes operation of experience and numerical analysis composed similar condition with real high pressure feedwater heater. This study applied squared, curved and new type impingement baffle plates to feedwater heater same as previous study. In addition, it shows difference of pressure distribution and value between single phase and two phase based on experience and numerical analysis.

  • PDF

Design Modification and Correlation Verification between Reattachment Flow of Dispersed Jet and Local Thinning of Feedwater Heater (충돌로 인해 분산된 2상 제트스팀의 재부착 현상과 국부 감육 상관관계 규명 및 설계개선에 관한 연구)

  • Kim, Hyung-Joon;Kim, Kyung-Hoon;Hwang, Kyeong-Mo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.483-495
    • /
    • 2009
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damange, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed downstream of the high pressure turbine extraction stream line-inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes operation of experience and numerical analysis composed similar condition with real high pressure feedwater heater. This study applied squared, curved and new type impingement baffle plates to feedwater heater same as previous study. In addition, it shows difference of pressure distribution and value between single phase and two phase based on experience and numerical analysis.