• Title/Summary/Keyword: Walking assistance system

Search Result 37, Processing Time 0.04 seconds

Development of Ergonomic Walking Assistance Robot for the Elderly and the Infirm (노약자들을 위한 인체공학적 보행 보조 로봇의 개발)

  • Kim, Jung-Yup
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.600-606
    • /
    • 2013
  • This paper describes the development of a novel walking assistance robot for the elderly and infirm. In the case of simple walking assistance devices, the walking safety and effectiveness are somewhat low; hence, caregivers are frequently required. The walking assistance robot developed in this research is capable of securely and conveniently assisting a walking user by using electric motors and various devices without a caregiver. The main features include the following. First, the walking safety is improved by using a pelvis supporter, and the robot is able to follow the user effectively by means of ergonomic motion sensors and electric powered wheels. Second, it is possible to adjust the load applied to the lower body by adjusting the height of the pelvis supporter. Finally, it is possible to inform the approximate distance and direction of any obstacle around the robot using the sounds and vibrations for the blind and the hearing impaired. The performance of the developed walking assistance robot was successfully verified using a walking assistance test in a narrow-corridor environment.

Design and development of in-wheel motor-based walking assistance system

  • Park, Hyeong-Sam;An, Duk-Keun;Kim, Dong-Cheol;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.371-376
    • /
    • 2022
  • The purpose of this study is to develop a walking assistance system with mobility support and life support functions so that the elderly with reduced physical ability and patients who are uncomfortable when moving can move comfortably indoors and outdoors, and help social life. An obstacle recognition sensor module that can be applied indoors and outdoors is installed on a lightweight walking aid. The purpose of this study is to develop a walking assistance system with mobility support and life support functions so that the elderly with reduced physical ability and patients who are uncomfortable when moving can move comfortably indoors and outdoors, and help social life. An obstacle recognition sensor module that can be applied indoors and outdoors is installed on a lightweight walking aid. It is a system structure of an integrated actuator and brake system that can avoid obstacles in consideration of the safety of the elderly and is easy to install on the device. In this paper, the design of a lightweight walking aid was designed to increase the convenience of the socially disadvantaged and the elderly with reduced exercise ability. In addition, in order to overcome the disadvantage of being inconvenient to use indoors due to the noise and vibration of the motor during operation, an In-Wheel type motor is applied to develop and apply a low noise, low vibration and high efficiency drive system.

Walking Assistance Robot Design and Development (보행 보조 로봇의 설계 및 개발)

  • Lee, Min-Gyu;Lee, Yong-Hoon;Yim, Hong-Jae;Lee, Yong-Kwun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.585-592
    • /
    • 2008
  • The aging society comes, the number of the old people expended. Technical aids allow elderly and handicapped people to live independently in their private homes as long as they wish. As a contribution to these required technological solutions, a demonstrator platform for a walking assistance robot. robot which has the capability to perform fetch and carry and various other supporting tasks. In this study, we addresses the development of a walking assistance robot system. We execute static analysis, vibration analysis and flexible dynamics to reserve stability at the design. Each motion of the robot uses a linear actuator and gears. Motion can be distinguished into 3 parts depending on the up & down, rotation, and cushion trans. In each motion, we compare the displacement of the case to be rigid with the case to be flexible. As a result, manufactured and feasibility of the walking assistance robot is validated through preliminary experiments.

  • PDF

A Machine-to-machine based Intelligent Walking Assistance System for Visually Impaired Person (시각장애인을 위한 M2M 기반의 지능형 보행보조시스템)

  • Kang, Chang-Soon;Jo, Hwa-Seop;Kim, Byung-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3B
    • /
    • pp.287-296
    • /
    • 2011
  • The white stick mainly used for visually impaired person has difficulty in providing location information and effective countermeasures for emergency situations encountered during walking as well as detecting floating obstacles on the ground. In this paper, we propose a machine-to-machine based intelligent walking assistance system for safe and convenient walking of the visually impaired. The proposed system consists of a walking assistance stick used by the visually impaired and a server supporting multiple stick users in remote places through mobile communication networks. The stick equipped with ultrasonic sensors, GPS(global positioning system) receiver and vibrator not only detects floating obstacles, but also offers stick users with present location identification utilizing a text-to-voice conversion technology. Besides providing geographic information, the server notifies the emergency locations of users to guardian and aid agency, and it provides log information during walking such as the place, time and the number of accidents. Test results with a developed prototype system have shown that the system properly performs the functions and satisfies overall system performance.

Wearable sensor network system for walking assistance

  • Moromugi, Shunji;Owatari, Hiroshi;Fukuda, Yoshio;Kim, Seok-Hwan;Tanaka, Motohiro;Ishimatsu, Takakazu;Tanaka, Takayuki;Feng, Maria Q.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2138-2142
    • /
    • 2005
  • A wearable sensor system is proposed as a man-machine interface to control a device for walking assistance. The sensor system is composed of small sensors to detect the information about the user's body motion such as the activity level of skeletal muscles and the acceleration of each body parts. Each sensor includes a microcomputer and all the sensors are connected into a network by using the serial communication function of the microcomputer. The whole network is integrated into a belt made of soft fabric, thus, users can put on/off very easily. The sensor system is very reliable because of its decentralized network configuration. The body information obtained from the sensor system is used for controlling the assisting device to achieve a comfortable and an effective walking training.

  • PDF

Walking Assistance System for Sight Impaired People Based on a Multimodal Information Transformation Technique (멀티모달 정보변환을 통한 시각장애우 보행 보조 시스템)

  • Yu, Jae-Hyoung;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.465-472
    • /
    • 2009
  • This paper proposes a multimodal information transformation system that converts the image information to the voice information to provide the sight impaired people with walking area and obstacles, which are extracted by an acquired image from a single CCD camera. Using a chain-code line detection algorithm, the walking area is found from the vanishing point and boundary of a sidewalk on the edge image. And obstacles are detected by Gabor filter of extracting vertical lines on the walking area. The proposed system expresses the voice information of pre-defined sentences, consisting of template words which mean walking area and obstacles. The multi-modal information transformation system serves the useful voice information to the sight impaired that intend to reach their destination. The experiments of the proposed algorithm has been implemented on the indoor and outdoor environments, and verified its superiority to exactly provide walking parameters sentences.

Recognition of Stance Phase for Walking Assistive Devices by Foot Pressure Patterns (족압패턴에 의한 보행보조기를 위한 입각기 감지기법)

  • Lee, Sang-Ryong;Heo, Geun-Sub;Kang, Oh-Hyun;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.223-228
    • /
    • 2011
  • In this paper, we proposed a technique to recognize three states in stance phase of gait cycle. Walking assistive devices are used to help the elderly people walk or to monitor walking behavior of the disabled persons. For the effective assistance, they adopt an intelligent sensor system to understand user's current state in walking. There are three states in stance phase; Loading Response, Midstance, and Terminal Stance. We developed a foot pressure sensor using 24 FSRs (Force Sensing/Sensitive Resistors). The foot pressure patterns were integrated through the interpolation of FSR cell array. The pressure patterns were processed to get the trajectories of COM (Center of Mass). Using the trajectories of COM of foot pressure, we can recognize the three states of stance phase. The experimental results show the effective recognition of stance phase and the possibility of usage on the walking assistive device for better control and/or foot pressure monitoring.

A Study on Control of Walking Assistance Robot for Hemiplegia Patients with EMG Signal (EMG 신호로 반신불수 환자의 보행 보조로봇 제어에 관한 연구)

  • Shin, D.S.;Lee, D.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • The exoskeleton robot to assist walking of hemiplegia patients or disabled persons has been studied in this paper. The exoskeleton robot with degrees of freedom of 2 axis has been developed and tested for joint motion. The obtained EMG signal from normal person was analyzed and the control signal was extracted from it for convenient and automotive performance of assistance robot to help hemiplegia patient walks as normal person does. the purpose of using FES(Functional Electrical Stimulation) for hemiplegia patient's walk is to restore damaged body function by this, but this could give fatal electrical shock to patients by wrong use or cause quick fatigue in muscle by continuous stimulation. The convenient movement of hemiplegia patients with minimum muscle fatigue was looked possibly by operation of assistance robot exoskeleton using control signal. and the walking assistance exoskeleton robot seemed works more efficiently than using FES stimulator. The experiment in this study was performed based on usual motion in our life like walking, standing-up, sitting-down, and particularly feedback control system using Piezo sensor along with button switch was applied for smooth swing motion in walking. The experiment also shows that hemiplegia patients can move conveniently by using electromyogram signal of healthy leg for the operation signal of assistance robot system attached at damaged symmetrical leg.

  • PDF

Real-time Sign Object Detection in Subway station using Rotation-invariant Zernike Moment (회전 불변 제르니케 모멘트를 이용한 실시간 지하철 기호 객체 검출)

  • Weon, Sun-Hee;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.12 no.3
    • /
    • pp.279-289
    • /
    • 2011
  • The latest hardware and software techniques are combined to give safe walking guidance and convenient service of realtime walking assistance system for visually impaired person. This system consists of obstacle detection and perception, place recognition, and sign recognition for pedestrian can safely walking to arrive at their destination. In this paper, we exploit the sign object detection system in subway station for sign recognition that one of the important factors of walking assistance system. This paper suggest the adaptive feature map that can be robustly extract the sign object region from complexed environment with light and noise. And recognize a sign using fast zernike moment features which is invariant under translation, rotation and scale of object during walking. We considered three types of signs as arrow, restroom, and exit number and perform the training and recognizing steps through adaboost classifier. The experimental results prove that our method can be suitable and stable for real-time system through yields on the average 87.16% stable detection rate and 20 frame/sec of operation time for three types of signs in 5000 images of sign database.