• 제목/요약/키워드: Walking Assistance

검색결과 89건 처리시간 0.029초

노약자들을 위한 인체공학적 보행 보조 로봇의 개발 (Development of Ergonomic Walking Assistance Robot for the Elderly and the Infirm)

  • 김정엽
    • 한국생산제조학회지
    • /
    • 제22권3_1spc호
    • /
    • pp.600-606
    • /
    • 2013
  • This paper describes the development of a novel walking assistance robot for the elderly and infirm. In the case of simple walking assistance devices, the walking safety and effectiveness are somewhat low; hence, caregivers are frequently required. The walking assistance robot developed in this research is capable of securely and conveniently assisting a walking user by using electric motors and various devices without a caregiver. The main features include the following. First, the walking safety is improved by using a pelvis supporter, and the robot is able to follow the user effectively by means of ergonomic motion sensors and electric powered wheels. Second, it is possible to adjust the load applied to the lower body by adjusting the height of the pelvis supporter. Finally, it is possible to inform the approximate distance and direction of any obstacle around the robot using the sounds and vibrations for the blind and the hearing impaired. The performance of the developed walking assistance robot was successfully verified using a walking assistance test in a narrow-corridor environment.

보행 보조 로봇의 설계 및 개발 (Walking Assistance Robot Design and Development)

  • 이민규;이용훈;임홍재;이용권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.585-592
    • /
    • 2008
  • The aging society comes, the number of the old people expended. Technical aids allow elderly and handicapped people to live independently in their private homes as long as they wish. As a contribution to these required technological solutions, a demonstrator platform for a walking assistance robot. robot which has the capability to perform fetch and carry and various other supporting tasks. In this study, we addresses the development of a walking assistance robot system. We execute static analysis, vibration analysis and flexible dynamics to reserve stability at the design. Each motion of the robot uses a linear actuator and gears. Motion can be distinguished into 3 parts depending on the up & down, rotation, and cushion trans. In each motion, we compare the displacement of the case to be rigid with the case to be flexible. As a result, manufactured and feasibility of the walking assistance robot is validated through preliminary experiments.

  • PDF

시각장애인을 위한 보행보조 로봇의 개발 (Development of walking assistance robot for the blind)

  • 강정호;김창걸;이승하;송병섭
    • 센서학회지
    • /
    • 제16권4호
    • /
    • pp.286-293
    • /
    • 2007
  • For safe walking of the people who are blind, walking assistance robot which can detecting and avoiding the obstacle was investigated. The implemented prototype walking assistance robot consists of a obstacle detecting module, a user interface using acoustic signal and a driving module. The obstacle detecting module uses 6 ultrasonic sensors those located at the front part of the robot can perceive the obstacle which is in 3 meter distances and $180^{\circ}$ degrees. It calculates the distance and degree from the obstacle using TOF (time of flight) method and decides the 3-dimensional location of the obstacle. The obstacle information is delivered to the user using acoustic alarm and guide sound. The robot is designed to avoid by itself when the obstacle is detecting and the user only follows it to safe walking. After the designed robot was implemented, driving and obstacle detecting experiments were carried out. The result showed that the designed walking assistance robot will help the people who are blind to walk around safe.

A Study on the Walking Recognition Method of Assistance Robot Legs Using EEG and EMG Signals

  • Shin, Dae Seob
    • 전기전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.269-274
    • /
    • 2020
  • This paper is to study the exoskeleton robot for the walking of the elderly and the disabled. We developed and tested an Exoskeletal robot with two axes of freedom for joint motion. The EEG and EMG signals were used to move the joints of the Exoskeletal robot. By analyzing the EMG signal, the control signal was extracted and applied to the robot to facilitate the walking operation of the walking assistance robot. In addition, the brain-computer interface technology is applied to perform the operation of the robot using brain waves, spontaneous electrical activities recorded on the human scalp. These two signals were fused to study the walking recognition method of the supporting robot leg.

Design and development of in-wheel motor-based walking assistance system

  • Park, Hyeong-Sam;An, Duk-Keun;Kim, Dong-Cheol;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • 제10권3호
    • /
    • pp.371-376
    • /
    • 2022
  • The purpose of this study is to develop a walking assistance system with mobility support and life support functions so that the elderly with reduced physical ability and patients who are uncomfortable when moving can move comfortably indoors and outdoors, and help social life. An obstacle recognition sensor module that can be applied indoors and outdoors is installed on a lightweight walking aid. The purpose of this study is to develop a walking assistance system with mobility support and life support functions so that the elderly with reduced physical ability and patients who are uncomfortable when moving can move comfortably indoors and outdoors, and help social life. An obstacle recognition sensor module that can be applied indoors and outdoors is installed on a lightweight walking aid. It is a system structure of an integrated actuator and brake system that can avoid obstacles in consideration of the safety of the elderly and is easy to install on the device. In this paper, the design of a lightweight walking aid was designed to increase the convenience of the socially disadvantaged and the elderly with reduced exercise ability. In addition, in order to overcome the disadvantage of being inconvenient to use indoors due to the noise and vibration of the motor during operation, an In-Wheel type motor is applied to develop and apply a low noise, low vibration and high efficiency drive system.

보행보조 로봇의 운동학적 특성 (Kinematic Characteristics of Walking-Assistance Robot)

  • 배하석;김진오;전한용;박광훈;이경환
    • 대한기계학회논문집A
    • /
    • 제35권5호
    • /
    • pp.503-515
    • /
    • 2011
  • 보행 재활 훈련용 보행보조 로봇을 개발하고, 시제품의 운동학적 특성을 평가하였다. 이 보행보조 로봇은 고관절(hip), 슬관절(knee), 족관절(ankle) 등으로 구성되며, 각 관절은 감속기가 포함된 모터에 의해 구동된다. 인체 보행 운동을 이론적으로 해석하여, 보행 운동 중 각 관절의 각도 변위를 계산하는 식을 구하였고, 계산된 각도 변위를 로봇 구동기에 입력하였다. 트레드밀(treadmill) 위에서의 실험을 통해 다양한 보행 속도(walking speed) 및 보폭(stride)에서 각 관절의 출력 각도 변위를 측정하고 입력 값과 비교하였다. 입력 각도 변위와 출력 각도 변위의 차이가 고관절에서는 5.22%, 슬관절에서는 2.97% 이내로 일치함을 확인하여, 설계대로 보행보조 로봇이 작동함을 입증하였다.

Design and Evaluation of the Unmanned Technology Research Center Exoskeleton Implementing the Precedence Walking Assistance Mechanism

  • Cha, Dowan;Oh, Sung Nam;Lee, Hee Hwan;Kim, Kyung-Soo;Kim, Kab Il;Kim, Soohyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2376-2383
    • /
    • 2015
  • Assistance of the operator’s walking ability while carrying a load is a challenging area in lower limb exoskeletons. We implement an exoskeleton called the Unmanned Technology Research Center Exoskeleton (UTRCEXO), which enables the operator to walk with a load more comfortably. The UTRCEXO makes use of two types of DC motor to assist the hip and knee joints. The UTRCEXO detects the operator’s walking intention including step initiation with insole-type FSRs faster without using any bio-signals and precedes the operator’s step with a reference torque. It not only reduces interaction forces between the operator and the UTRCEXO, but also allows the operator to walk with a load more comfortably. In this paper, we present the UTRCEXO implementing the walking assistance mechanism with interaction force reduction during walking.

시각장애인을 위한 M2M 기반의 지능형 보행보조시스템 (A Machine-to-machine based Intelligent Walking Assistance System for Visually Impaired Person)

  • 강창순;조화섭;김병희
    • 한국통신학회논문지
    • /
    • 제36권3B호
    • /
    • pp.287-296
    • /
    • 2011
  • 시각장애인들이 주로 사용하고 있는 백색 지팡이(White Stick)는 지상의 부유장애물에 대한 감지가 어려울 뿐만 아니라, 보행중인 시각장애인에게 현재 위치정보와 응급상황 발생시 효과적인 보호 조치를 제공하는데 문제점이 있다. 본 논문에서는 이와 같은 문제점을 해결하여 시각장애인들이 보다 안전하고 편리한 보행을 할수 있는 사물지능통신(M2M : Machine-to-Machine) 기반의 지능형 보행보조시스템을 제안한다. 제안하는 시스템은 시각장애인이 사용하는 보행보조지팡이와 이동통신망을 통하여 다수의 보행보조지팡이 사용자를 원격 지원하는 서버로 구성된다. 보행보조지팡이는 초음파센서와 문자-음성 변환기술 등을 이용한 장애물 감지 및 인지 가능뿐만 아니라, 서버에서 제공하는 지리정보와 GPS(Global Positioning System) 수신 장치 등을 이용한 현재위치 알림 및 확인, 위급상황 대처 기능 등을 제공한다. 서버는 지리정보 제공뿐만 아니라, 보호자나 구호기관에 위급상황 발생위치 알림, 보행 동안의 주요 정보(장소 시간 및 횟수 등)를 제공한다. 제안 시스템의 시제품을 통한 기능 및 성능 시험 결과 만족스런 결과를 얻을수 있었다.

Wearable sensor network system for walking assistance

  • Moromugi, Shunji;Owatari, Hiroshi;Fukuda, Yoshio;Kim, Seok-Hwan;Tanaka, Motohiro;Ishimatsu, Takakazu;Tanaka, Takayuki;Feng, Maria Q.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2138-2142
    • /
    • 2005
  • A wearable sensor system is proposed as a man-machine interface to control a device for walking assistance. The sensor system is composed of small sensors to detect the information about the user's body motion such as the activity level of skeletal muscles and the acceleration of each body parts. Each sensor includes a microcomputer and all the sensors are connected into a network by using the serial communication function of the microcomputer. The whole network is integrated into a belt made of soft fabric, thus, users can put on/off very easily. The sensor system is very reliable because of its decentralized network configuration. The body information obtained from the sensor system is used for controlling the assisting device to achieve a comfortable and an effective walking training.

  • PDF