• Title/Summary/Keyword: Walking Analysis

Search Result 1,368, Processing Time 0.028 seconds

Effects of Various Types of Bridge Exercise on the Walking Ability of Stroke Patients

  • Ynag, Dae-Jung;Uhm, Yo-Han
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.3
    • /
    • pp.137-145
    • /
    • 2020
  • Purpose: The purpose of this study is to examine the effect of various bridge exercises on walking ability. Method: The subjects were 30 stroke patients. They were divided into a bridge exercise group on a stable support surface (Group I), a bridge exercise group on an unstable support surface (Group II), and a bridge exercise group combined with whole body vibrations (Group III). 10 subjects were randomly assigned into each group. The subjects of this study had 30 minutes of nervous system physical therapy including gait training and strength training. In addition, each group underwent a 30 minutes session five times a week for eight weeks. Before intervention, LUKOtronic was used to measure step width and step length, time was measured with a 10 m walking test, and time and number of steps were measured with the figure 8 walking test. After the intervention, remeasured and analysis was performed for each group. Results: As a result of comparing and analyzing the change of walking ability between groups, there was a statistically significant difference. As a result of the post hoc analysis according to the change of walking ability among groups, the change of walking ability was larger in Group III than in Group I and Group II. Conclusion: Based on these results, it is confirmed that the bridge exercise combined with whole body vibration was more effective for walking ability. Based on these findings, this study proposes an effective program for elite athletes as well as stroke patients.

Survey and Analysis of Pedestrians' Preferences on Walking Directions (보행자의 선호 보행방향에 관한 조사 및 분석)

  • Jung, In-Ju;Jung, Hwa-S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.75-83
    • /
    • 2007
  • Why do some countries walk on the right and others on the left? People have a dominant hand which leads to a natural tendency to favor one side of the road or another depending on the means of transportation being used. The primary objective of this study was to investigate the stereotype of Korean regarding preferred walking direction in encountering various facilities and provide the appropriate information to traffic policy makers. Six hundred Korean male and female subjects aging from 12 to 83 were selected to investigate the various statistics about their preferred walking direction and their employment characteristics on walking diverse facilities. The walking directions of eleven different facilities were asked along with other relative subjects' characteristics(e.g., age, gender, hand and foot dominance) to determine the relationship among these obtained data. The descriptive statistics showed that 73.7% and 26.3% were preferred walking right and left direction respectively. Moreover, various statistical analysis revealed that general tendency of walking direction was varied by hand and foot dominances. There were strong tendency that right-handed people prefer walking right side of the road and vise versa, hence this should be considered in setting up traffic policies. As a concluding remark, it is better to design traffic policies and regulations in the way that peoples' preference and expectation.

Comparison of Impulses Experienced on Human Joints Walking on the Ground to Those Experienced Walking on a Treadmill

  • So, Byung-Rok;Yi, Byung-Ju;Han, Seog-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.243-252
    • /
    • 2008
  • It has been reported that long-term exercise on a treadmill (running machine) may cause injury to the joints in a human's lower extremities. Previous works related to analysis of human walking motion are, however, mostly based on clinical statistics and experimental methodology. This paper proposes an analytical methodology. Specifically, this work deals with a comparison of normal walking on the ground and walking on a treadmill in regard to the external and internal impulses exerted on the joints of a human's lower extremities. First, a modeling procedure of impulses, impulse geometry, and impulse measure for the human lower extremity model will be briefly introduced and a new impulse measure for analysis of internal impulse is developed. Based on these analytical tools, we analyze the external and internal impulses through a planar 7-linked human lower extremity model. It is shown through simulation that the human walking on a treadmill exhibits greater internal impulses on the knee and ankle joints of the supporting leg when compared to that on the ground. In order to corroborate the effectiveness of the proposed methodology, a force platform was developed to measure the external impulses exerted on the ground for the cases of the normal walking and walking on the treadmill. It is shown that the experimental results correspond well to the simulation results.

The Influence Factor Analysis of Spinal Cord Independence Measure(SCIM) on Walking in Spinal Cord Injury (척수손상환자의 보행에 영향을 주는 SCIM 요인 분석)

  • Jung, Dae-In
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.2 no.1
    • /
    • pp.83-92
    • /
    • 2004
  • This study aims to the influenced factor analysis of spinal cord independence measure(SCIM), on walking velocity, walking endurance, time up & go(TUG), and subject characteristics. The subject of this study were 12 persons with incomplete spinal cord injury(ASIA C, D). All subject ambulatory with or without an assistive device. All participants were assessed on SCIM(score), walking velocity(m/s), walking endurance(m) and TUG(s). The data were analyzed using independent t-test and stepwise multiple regression. The results revealed that no statistical difference was noted in subject characteristics among SCIM, walking velocity, walking endurance, TUG(p>0.5). The independence score, breathing-sphincter control and ambulation were important factors in TUG(31.4%). The results suggest that SCIM may be an inappropriate assessment tool to predict gait ability of patient with incomplete spinal cord injury. Further study about gait speed, gait endurance and TUG by change of SCIM is needed using to patient of incomplete spinal cord injury.

  • PDF

Correlation Between Walking Ability Assessment Tools for Patients With Spinal Cord Injury Using MBI, FIM, SCIM II, WISCI, Walking Velocity, and Walking Endurance (척수손상 환자의 보행능력 검사를 위한 평가도구의 비교: MBI, FIM, SCIM II, WISCI, 보행속도, 보행지구력)

  • Lee, Hyoung-Soo;Song, Byung-Ho;Shin, Young-Il
    • Physical Therapy Korea
    • /
    • v.13 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The main purposes of this study were to find the correlation between walking ability assessment tools using the Modified Barthel Index (MBI), Functional Independence Measure (FIM), Spinal Cord Injury Measurement II (SCIM II), Walking Index for Spinal Cord Injury (WISCI), walking velocity, and walking endurance. The study population consisted of 56 patients with spinal cord injury referred to the department of Rehabilitative Medicine in the National Rehabilitation Hospital. All subjects were ambulatory with or without an assistive device. All participants were assessed by MBI, FIM, SCIM II, WISCI, walking velocity, and walking endurance. The data were analyzed using Pearson correlation analysis and X2. There was significant correlation between the MBI, FIM, SCIM II, WISCI, walking velocity, and walking endurance (p<.01). In particular, WISCI has a significant correlation with SCIM II(p<.001). Therefore the WISCI scale is an appropriate assessment tool to predict the gait ability of patients with spinal cord injury. Further study about MBI, FIM, SCIM II, WISCI, walking velocity, and walking endurance is needed using a longitudinal study design.

  • PDF

Analysis of Balance of Quadrupedal Robotic Walk using Measure of Balance Margin

  • Kim, Byoung-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.100-105
    • /
    • 2013
  • In this study, we analyze the balance of quadruped walking robots. For this purpose, a simplified polygonal model of a quadruped walking configuration is considered. A boundary-range-based balance margin is used for determining the system stability of the polygonal walking configuration considered herein. The balance margin enables the estimation of the walking configuration's balance for effective walking. The usefulness of the balance margin is demonstrated through exemplary simulations. Furthermore, balance compensation by means of foot stepping is addressed.

The Establishment of Walking Energy-Weighted Visibility ERAM Model to Analyze the 3D Vertical and Horizontal Network Spaces in a Building (3차원 수직·수평 연결 네트워크 건축 공간분석을 위한 보행에너지 가중 Visibility ERAM 모델 구축)

  • Choi, Sung-Pil;Piao, Gen-Song;Choi, Jae-Pil
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.11
    • /
    • pp.23-32
    • /
    • 2018
  • The purpose of this study is to establish a walking energy weighted ERAM model that can predict the pedestrian volume by the connection structure of the vertical and horizontal spaces within a three-dimensional building. The process of building a walking-energy weighted ERAM model is as follows. First, the spatial graph was used to reproduce three-dimensional buildings with vertical and horizontal spatial connection structures. Second, the walking energy was measured on the spatial graph. Third, ERAM model was used to apply weights with spatial connection properties in random walking environment, and the walking energy weights were applied to the ERAM model to calculate the walk energy weighted ERAM values and visualize the distribution of pedestrian flow. To verify the validation of the established model, existing and proposed spatial analysis models were compared to real space. The results of this study are as follows : The model proposed in this study showed as much elaborated estimation of pedestrian traffic flow in real space as in traditional spatial analysis models, and also it showed much higher level of forecasting pedestrian traffic flow in real space than existing models.

Analysis of Gait Characteristics of Walking in Various Emotion Status (다양한 감정 상태에서의 보행 특징 분석)

  • Dang, Van Chien;Tran, Trung Tin;Kim, Jong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.477-481
    • /
    • 2014
  • Human has various types of emotions which affect speculation, judgement, activity, and the like at the moment. Specifically, walking is also affected by emotions, because one's emotion status can be easily inferred by his or her walking style. The present research on biped walking with humanoid robots is mainly focused on stable walking irrespective of ground condition. For effective human-robot interaction, however, walking pattern needs to be changed depending on the emotion status of the robot. This paper provides analysis and comparison of gait experiment data for the men and women in four representative emotion states, i.e., joy, sorrow, ease, and anger, which was acquired by a gait analysis system. The data and analysis results provided in this paper will be referenced to emotional biped walking of a humanoid robot.

Analysis of the Effects of Walking Environment Components on Pedestrian Satisfaction and Dissatisfaction

  • Lee, Meesung;Lee, Heejung;Kim, Taeeun;Hwang, Sungjoo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.863-870
    • /
    • 2022
  • Unsatisfactory urban walking environment stresses urban residents, and may cause mental illness and chronic diseases by reducing walking activities. Therefore, establishing a high-quality walking environment that can promote walking activities in urban residents has emerged as an important issue. The walking environment consists of various components, such as trees, stairs, streetlights, benches, signs, fences, and facilities, and it is essential to understand which components and their settings act as satisfiers or dissatisfiers for pedestrians, to create a better quality walking environment. Therefore, this study investigated pedestrian satisfaction and dissatisfaction as a function of various environmental components through a survey using walking environment images. The results revealed that most of the walking environment components except the braille block and treezone exhibited significant correlations with pedestrian satisfaction. Particularly, safety-related component (e.g., adjacent roads, parked cars, traffic cushions, and car separation), and landscape-related components (e.g., trees and green), as well as the material settings of landscape facilities (e.g., wooden fences, benches, stairs, and walkway surfaces) correlated with pedestrian satisfaction. The results of this study can contribute to the extraction of useful features to evaluate pedestrian satisfaction as a function of the walking environment. The research outcome is expected to assist in the effective arrangement of walking environment components and their settings, which will ultimately contribute to significantly satisfactory walking environment and encourage walking activities.

  • PDF

A study on the control for impactless gait of biped robot (이족보행로봇의 비충격 걸음새를 위한 제어에 관한 연구)

  • 박인규;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.536-539
    • /
    • 1997
  • This paper presents a three dimensional modeling and a trajectory generation for minimized impact walking of the biped robot. Inverse dynamic analysis and forward dynamic analysis are performed considering impact force between the foot and ground for determining the actuator capacity and for simulating the proposed biped walking robot. Double support phase walking is considered for close to human's with adding the kinematic constraints on the one of the single support phase.

  • PDF