• Title/Summary/Keyword: Wafer Polishing

Search Result 256, Processing Time 0.03 seconds

The Polishing Characteristics and Development of Ultrasonic Polishing System (초음파 폴리싱 시스템의 개발 및 특성)

  • Moon, H.H.;Park, B.G.;Kim, S.C.;Lee, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1014-1020
    • /
    • 2003
  • We have developed the ultrasonic polishing system to get super finishing that consist of machine part that can rotate and travel the main shaft with power 1.5kW, ultrasonic generator with frequency 20kHz. By using this system we were investigated the characteristics of ultrasonic polishing and deduced the major facters which affect the surface roughness by the experimental plans for three different materials such as ceramic, glass, and wafer, and so could be obtained following results. We could be obtained the excellent surface for hard-to-difficult cutting materials. The rotating speed could be found to be major factor influencing the surface roughness. In the case of ceramic and wafer, we were able to obtain good surface roughness when the feed rate and ultrasonic output is higher. In the case of glass, the surface roughness becames worse when ultrasonic output is higher because of increasing of load affacting on the particles in slurry.

  • PDF

Tribology Research Trends in Chemical Mechanical Polishing (CMP) Process (화학기계적 연마(CMP) 공정에서의 트라이볼로지 연구 동향)

  • Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.115-122
    • /
    • 2018
  • Chemical mechanical polishing (CMP) is a hybrid processing method in which the surface of a wafer is planarized by chemical and mechanical material removal. Since mechanical material removal in CMP is caused by the rolling or sliding of abrasive particles, interfacial friction during processing greatly influences the CMP results. In this paper, the trend of tribology research on CMP process is discussed. First, various friction force monitoring methods are introduced, and three elements in the CMP tribo-system are defined based on the material removal mechanism of the CMP process. Tribological studies on the CMP process include studies of interfacial friction due to changes in consumables such as slurry and polishing pad, modeling of material removal rate using contact mechanics, and stick-slip friction and scratches. The real area of contact (RCA) between the polishing pad and wafer also has a significant influence on the polishing result in the CMP process, and many researchers have studied RCA control and prediction. Despite the fact that the CMP process is a hybrid process using chemical reactions and mechanical material removal, tribological studies to date have yet to clarify the effects of chemical reactions on interfacial friction. In addition, it is necessary to clarify the relationship between the interface friction phenomenon and physical surface defects in CMP, and the cause of their occurrence.

Zeta-potential in CMP process of sapphire wafer on poly-urethane pad (폴리우레탄 패드를 이용한 기계-화학 연마공정에서 파이어 웨이퍼 표면 전위)

  • Hwang, Sung-Won;Shin, Gwi-Su;Kim, Keun-Joo;Suh, Nam-Sup
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1816-1821
    • /
    • 2003
  • The sapphire wafer for blue light emitting device was manufactured by the implementation of the chemical and mechanical polishing process. The surface polishing of crystalline sapphire wafer was characterized by zeta potential measurement. The reduction process with the alkali slurry provides the surface chemical reaction with sapphire atoms. The poly-urethane pad also provides the frictional force to take out the chemically-reacted surface layers. The surface roughness was measured by the atomic force microscope and the crystalline quality was characterized by the double crystal X -ray diffraction analysis.

  • PDF

A Study on the Zeta-potential of CMP processed Sapphire Wafers (CMP 가공된 사파이어웨이퍼의 웨이퍼내 표면전위에 관한 연구)

  • Hwang Sung Won;Shin Gwisu;Kim Keunjoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.46-52
    • /
    • 2005
  • The sapphire wafer was polished by the implementation of the surface machining technology based on nano-tribology, The removal process has been performed by grinding, lapping and chemical-mechanical polishing. For the chemical mechanical polishing process, the chemical reaction between the slurry and sapphire wafer was investigated in terms of the change of Zeta-potential between two materials. The Zeta-potential was -4.98 mV without the slurry in deionized water and was -37.05 mV for the slurry solution. By including the slurry into the deionized water the Zeta-potential -29.73 mV, indicating that the surface atoms of sapphire become more repulsive to be easy to separate. The average roughness of the polished surface of sapphire wafer was ranged to 1∼4$\AA$.

An Analysis on the Material Removal Mechanism of Chemical-Mechanical Polishing Process Part I: Coupled Integrated Material Removal Modeling (화학-기계적 연마 공정의 물질제거 메커니즘 해석 Part I: 연성 통합 모델링)

  • Seok, Jong-Won;Oh, Seung-Hee;Seok, Jong-Hyuk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.35-40
    • /
    • 2007
  • An integrated material removal model considering thermal, chemical and contact mechanical effects in CMP process is proposed. These effects are highly coupled together in the current modeling effort. The contact mechanics is employed in the model incorporated with the heat transfer and chemical reaction mechanisms. The mechanical abrasion actions happening due to the mechanical contacts between the wafer and abrasive particles in the slurry and between the wafer and pad asperities cause friction and consequently generate heats, which mainly acts as the heat source accelerating chemical reaction(s) between the wafer and slurry chemical(s). The proposed model may be a help in understanding multi-physical interactions in CMP process occurring among the wafer, pad and various consumables such as slurry.

  • PDF

Planarization Uniformity Improvement by a Variable Pressure Type of the Polishing Head with the Thin Rubber Sheet (얇은 고무막 형태의 압력가변 연마헤드를 이용한 웨이퍼 평탄도 개선 방법에 관한 연구)

  • Lee Hocheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.44-51
    • /
    • 2005
  • In this paper, a new polishing head with the variable pressure structure was studied to improve the planarization uniformity of the conventional template-metal head. Metal surface waviness and slurry distribution on the pad have been known to affect the polishing uniformity even in the synchronized quill and platen velocities. A polishing head with silicon rubber sheet was used to get a curved pressure distribution. In the experiment, the vertical deflection behavior on the pad was characterized with back pressure in the air chamber. Quill force increased linearly with backpressure. However, backpressure under a quill force made the upward movements of the quill. In the wafer polishing experiments, polishing rate and polishing thickness distribution were severely changed with backpressure. The best uniformity was observed with the standard deviation off.5% level of average polishing removal 215nm at backpressure 12.1kPa.

The Influence of Plate Structure in Membrane Embedded Head Polisher (Membrane Embedded Polisher Head의 Plate 구조의 영향)

  • Cho, Gyung-Su;Lee, Yang-Won;Kim, Dae-Young;Lee, Jin-Kyu;Kim, Hwal-Pyo;Jeong, Jae-Deok;Ha, Hyeon-U;Jeong, Ho-Seok;Yang, Won-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.136-139
    • /
    • 2004
  • The requirement of planarity, such as with-in-wafer nonuniformity, post thickness range, have become increasingly stringent as critical dimensions of devices are decreased and a better control of a planarity become important. The key factors influencing the planarity capability of the CMP process have been well understood through numerous related experiments. These usually include parameters such as process pressures, relative velocities, slurry temperature, polishing pad materials and polishing head structure. Many study have been done about polishing pad and its groove structure because it's considered as one of the key factors which can decide wafer uniformity directly. But, not many study have been done about polisher head structure, especially about polisher head plate design. The purpose of this paper is to know how the plate structure can affect wafer uniformity and how to deteriorate wafer yield. Furthermore, we studied several new designed plate to improve wafer uniformity and also improve wafer yield.

  • PDF

MRR model for the CMP Process Considering Relative Velocity (상대속도를 고려한 CMP 공정에서의 연마제거율 모델)

  • 김기현;오수익;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.225-229
    • /
    • 2004
  • Chemical Mechanical Polishing(CMP) process becomes one of the most important semiconductor processes. But the basic mechanism of CMP still does not established. Slurry fluid dynamics that there is a slurry film between a wafer and a pad and contact mechanics that a wafer and a pad contact directly are the two main studies for CMP. This paper based on the latter one, especially on the abrasion wear model. Material Removal Rate(MRR) is calculated using the trajectory length of every point on a wafer during the process time. Both the rotational velocity of a wafer and a pad and the wafer oscillation velocity which has omitted in other studies are considered. For the purpose of the verification of our simulation, we used the experimental results of S.H.Li et al. The simulation results show that the tendency of the calculated MRR using the relative velocity is very similar to the experimental results and that the oscillation effect on MRR at a real CMP condition is lower than 1.5%, which is higher than the relative velocity effect of wafer, and that the velocity factor. not the velocity itself, should be taken into consideration in the CMP wear model.

Evaluation of Fracture Strength of Silicon Wafer for Semiconductor Substrate by Point Load Test Method (점하중시험법에 의한 반도체 기판용 실리콘 웨이퍼의 파괴강도 평가)

  • Lee, Seung-Mi;Byeon, Jai-Won
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.26-31
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the effect of grinding process and thickness on the fracture strength of silicon die used for semiconductor substrate. Method: Silicon wafers with different thickness from $200{\mu}m$ to $50{\mu}m$ were prepared by chemical mechanical polishing (CMP) and dicing before grinding (DBG) process, respectively. Fracture load was measured by point load test for 50 silicon dies per each wafer. Results: Fracture strength at the center area was lower than that at the edge area of the wafer fabricated by DBG process, while random distribution of the fracture strength was observed for the CMPed wafer. Average fracture strength of DBGed specimens was higher than that of the CMPed ones for the same thickness of wafer. Conclusion: DBG process can be more helpful for lowering fracture probability during the semiconductor fabrication process than CMP process.

Study on Pad Properties as Polishing Result Affecting Factors in Chemical Mechanical Polishing (CMP공정에서 연마결과에 영향을 미치는 패드 물성치에 관한 연구)

  • 김형재;김호윤;정해도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.184-191
    • /
    • 2000
  • Properties of pad are investigated to find the relationship between the chemical mechanical polishing(CMP) results, such as material removal rate and within wafer non-uniformity(WIWNU), and its properties. Polishing pressure is considered as important factors to affect the results, so behavior of ordinary polymer is studied to define the polishing result affecting properties of pad. Experimental setup is devised to identify the behavior of pad and several different pads are used in chemical mechanical polishing experiments to verify the correlations between pad properties and polishing results. The results indicate that the viscoelastic properties of pad had relationships with the polishing results, and shows correlation between suggested properties of pad and polishing result.

  • PDF