• Title/Summary/Keyword: WAsP Engineering

Search Result 12,967, Processing Time 0.04 seconds

Molecular Cloning and Expression of a Xylanase Gene from Alkalophilic Bacillus sp.

  • Yu, Ju-Hyun;Kang, Yun-Sook;Park, Young-Seo;Bai, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.251-255
    • /
    • 1991
  • A 16 kilobase (kb) HindIII fragment of alkalophilic Bacillus sp. YC-335 containing a gene for xylanase synthesis was inserted at the HindIII site of pBR322 and cloned in Escherichia coli HB101. After subcloning of recombinant plasmid pYS52, the 1.5 kb fragment was found to code for xylanase activity, and the hybrid plasmid was named pYS55. The DNA insert of the plasmid was subjected to restriction enzyme mapping, which showed that pYS55 had single site for PuvII and SstI in the 1.5 kb insert fragment. Southern hybridization analysis revealed that the cloned gene was hybridized with chromosomal DNA from alkalophilic Bacillus sp. YC-335. About 64% of the enzyme activity was observed in the extracellular and periplasmic space of E. coli HB10l carrying pYS55.

  • PDF

Kinetic Study of pH Effects on Biological Hydrogen Production by a Mixed Culture

  • Jun, Yoon-Sun;Yu, Seung-Ho;Ryu, Keun-Garp;Lee, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1130-1135
    • /
    • 2008
  • The effect of pH on anaerobic hydrogen production was investigated under various pH conditions ranging from pH 3 to 10. When the modified Gompertz equation was applied to the statistical analysis of the experimental data, the hydrogen production potential and specific hydrogen production rate at pH 5 were 1,182 ml and 112.5 ml/g biomass-h, respectively. In this experiment, the maximum theoretical hydrogen conversion ratio was 22.56%. The Haldane equation model was used to find the optimum pH for hydrogen production and the maximum specific hydrogen production rate. The optimum pH predicted by this model is 5.5 and the maximum specific hydrogen production rate is 119.6 ml/g VSS-h. These data fit well with the experimented data($r^2=0.98$).

Effect of pH on the binding of hGM-CSF to ion exchange resin

  • Myoung, Hyun-Jong;Lee, Sang-Yoon;Lee, Kyoung-Hoon;Han, Kyu-Boem;Kim, Dong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.320-323
    • /
    • 2003
  • The effects of pH on the binding of human granulocyte-macrophage colony-stimulating factor (hGM-CSF) expressed from transgenic plant cell suspensions to cationic and anionic exchange resins were investigated. In terms of stability, the optimum pH was found to be 5-7. In the case of using buffer exchange, when CM-sepharose was used as a cationic exchange resin, the best binding pH was 4.8 (77%) and when DEAE-sepharose was used as an anionic exchange resin, the best binding pH was 5.5 (74%). Without using buffer exchange, the optimum pH was 4.6 and the adsorption yield was 84%. From these results, a possibility of overcoming the degradation and instability of secreted protein product by in firm adsorption was found.

  • PDF

High-Level Expression in Escherichia coli of Alkaline Phosphatase from Thermus caldophilus GK24 and Purification of the Recombinant Enzyme

  • Lee, Jung-Ha;Cho, Yong-Duk;Choi, Jeong-Jin;Lee, Yoon-Jin;Hoe, Hyang-Sook;Kim, Hyun-Kyu;Kwon, Suk-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.660-665
    • /
    • 2003
  • High-level expression of Thermus caldophilus GK24 alkaline phosphatase (Tca APase) was achieved in Escherichia coli using the pET-based expression plasmids, pEAP1 and pEAP2. In the case of plasmid pEAP2, the signal peptide region of Tca APase was replaced by the PelB leader peptide of expression vector pET-22b(+). Furthermore, the expression level was somewhat higher than that of plasmid pEAPl. A rapid purification procedure of Tca APase overproduced in E. coli was developed which involved heating to denature E. coli proteins followed by HiTrap Heparin HP column chromatography. Optimal temperature and pH and $Mg^{2+}$ dependence of the recombinant Tca APase were similar to those of native enzyme isolated from T. caldophilus GK24.

SYNTHESIS OF NANO-SIZED IRON FOR REDUCTIVE DECHLORINATION. 2. Effects of Synthesis Conditions on Iron Reactivities

  • Song, Ho-Cheol;Carraway, Elizabeth R.;Kim, Young-Hun
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.174-180
    • /
    • 2005
  • Nano-sized iron was synthesized using borohydride reduction of $Fe^{3+}$ in aqueous solution. A wide range of synthesis conditions including varying concentrations of reagents, reagent feeding rate, and solution pH was applied in an aqueous system under anaerobic condition. The reactivity of nano-sized iron from each synthesis was evaluated by reacting the iron with TCE in batch systems. Evidence obtained from this study suggest the reactivity of iron is strongly dependent on the synthesis solution pH. The iron reactivity increased as solution pH decreased. More rapid TCE reduction was observed for iron samples synthesized from higher initial $Fe^{3+}$ concentration, which resulted in lower solution pH during the synthesis reaction. Faster feeding of $BH_4^-$ solution to the $Fe^{3+}$ solution resulted in lower synthesis solution pH and the resultant iron samples gave higher TCE reduction rate. Lowering the pH of the solution after completion of the synthesis reaction significantly increased reactivity of iron. It is presumed that the increase in the reactivity of iron synthesized at lower pH is due to less precipitation of iron (hydr)oxides or less surface passivation of iron.

Determination of Variable Rate Fertilizing Amount in Small Size Fields for Precision Fertilizing (정밀 시비를 위한 소구획 경작지내의 가변적 시비처리량 결정)

  • 조성인;강인성;최상현
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.241-250
    • /
    • 2000
  • The feasibility of precision fertilizing for small size fields was studied by determining fertilizing amount of nitrogenous and calcareous to a cite specific region. A detailed soil survey at three experimental fields of $672m^2$, $300m^2$ and $140m^2$ revealed a considerable spatial variation of the pH and organic matter(OM) levels. Soil organic matter was measured using Walkley-Black method and soil pH was measured with a pH sensor. Soil sample was obtained by Grid Node Sampling Method. The soil sampling depth was 10∼20 cm from the soil surface. To display soil nutrient variation, a soil map was made using Geographic Information System (GIS) software. In soil mapping, soil data between nodes was interpolated using Inverse Distance Weighting (IDW) method. The variation was about 1∼1.8 in pH value and 1.4∼7% in OM content. Fertilizing Amount of nitrogenous and calcareous was determined by th fertilizing equation which was proposed by National Institute of Agricultural Science and Technology(NIAST). The variation of fertilizing amount was about 3∼11 kg/10a in nitrogenous and 70∼140 kg/10a in calcareous. The results showed a feasibility of precision fertilizing for small size fields.

  • PDF

Disposable Solid-State pH Sensor Using Nanoporous Platinum and Copolyelectrolytic Junction

  • Noh, Jong-Min;Park, Se-Jin;Kim, Hee-Chan;Chung, Taek-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3128-3132
    • /
    • 2010
  • A disposable solid-state pH sensor was realized by utilizing two nanoporous Pt (npPt) electrodes and a copolyelectrolytic junction. One nanoporous Pt electrode was to measure the pH as an indicating electrode (pH-IE) and the other assembled with copolyelectrolytic junction was to maintain constant open circuit potential ($E_{oc}$) as a solid-state reference electrode (SSRE). The copolyelectrolytic junction was composed of cationic and anionic polymers immobilized by photo-polymerization of N,N'-methylenebisacrylamide, making buffered electrolytic environment on the SSRE. It was expected to make. The nanoporous Pt surrounded by a constant pH excellently worked as a solid state reference electrode so as to stabilize the system within 30 s and retain the electrochemical environment regardless of unknown sample solutions. Combination between the SSRE and the pH-IE commonly based on nanoporous Pt yielded a complete solid-state pH sensor that requires no internal filling solution. The solid state pH sensing chip is simple and easy to fabricate so that it could be practically used for disposable purposes. Moreover, the solid-state pH sensor successfully functions in calibration-free mode in a variety of buffers and surfactant samples.

Effects of PTFE and W Addition on the Anti-Wear Properties of Ni-P Coatings (PTFE 및 W 첨가가 Ni-P 도금의 내마모 특성에 미치는 영향)

  • Kim, Myung-Sik;Hong, Jin-Won;Bae, Kyoo-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.25-28
    • /
    • 2007
  • Electroless Ni-P coating is widely used for chemical, electronic, and semiconductor equipment parts because of its corrosion resistance. The incorporation of chemically-inert PTFE particles into the Ni-P films improves properties such as, non-stick, anti-adhesive and better corrosion resistance. However, soft PTFE particles degrade the hardness, wear and abrasion resistance. In this study, effects of PTFE and W addition to the Ni-P-coatings were compared by the XRD, SEM, sheet resistance, contact angle, and microhardness measurements. The change in sheet resistance was negligible, but contact angle was doubled by the addition of PTFE and W. The microhardness was lower for Ni-P-PTFE, but higher for Ni-P-PTFE-W coatings, compared to that of Ni-P coatings.

  • PDF

CPT-based p-y analysis for mono-piles in sands under static and cyclic loading conditions

  • Kim, Garam;Kyung, Doohyun;Park, Donggyu;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.313-328
    • /
    • 2015
  • In the present study, a CPT-based p-y analysis method was proposed for offshore mono-piles embedded in sands. Static and cyclic loading conditions were both taken into account for the proposed method. The continuous soil profiling capability of CPT was an important consideration for the proposed method, where detailed soil profile condition with depth can be readily incorporated into the analysis. The hyperbolic function was adopted to describe the non-linear p-y curves. For the proposed hyperbolic p-y relationship, the ultimate lateral soil resistance $p_u$ was given as a function of the cone resistance, which is directly introduced into the analysis as an input data. For cyclic loading condition, two different cyclic modification factors were considered and compared. Case examples were selected to check the validity of the proposed CPT-based method. Calculated lateral displacements and bending moments from the proposed method were in good agreement with measured results for lateral displacement and bending moment profiles. It was observed the accuracy of calculated results for the conventional approach was largely dependent on the selection of friction angle that is to be adopted into the analysis.

pH-dependent Metabolic Flux Shift in Novel Hydrogen-Producing Bacterium Enterobacter sp. SNU-1453 (새로운 수소 생산 균주인 Enterobacter sp. SNU-1453의 pH에 따른 Metabolic Flux 변화)

  • Shin, Jong-Hwan;Yoon, Jong-Hyun;Ahn, Eun-Kyoung;Sim, Sang-Jun;Kim, Mi-Sun;Park, Tai-Hyun
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.464-469
    • /
    • 2005
  • For the biological production of hydrogen, a new fermentative hydrogen-producing bacterium, Enterobacter sp. SNU-1453, was isolated from a domestic landfill. During the culture of this bacterium, pH significantly decreased with the accumulation of various organic acids, and consequently this inhibited the production of hydrogen. It was found that the metabolic flux in this bacterium depended on the pH and affected the hydrogen production. A butanediol pathway was dominant during the fermentation when pH was not controlled. By controlling the pH at 7 this pathway can be shifted to a mixed acid pathway, which is favorable to the production of hydrogen.