• Title/Summary/Keyword: WATERSHED

Search Result 3,666, Processing Time 0.031 seconds

Web-based GIS for Real Time Hydrologic Topographical Data Extraction for the Geum River Watershed in Korea (Web기반 GIS를 이용한 금강유역의 실시간 수문지형인자 추출)

  • Nam, Won-Ho;Choi, Jin-Yong;Jang, Min-Won;Engel, B.A.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.5
    • /
    • pp.81-90
    • /
    • 2007
  • Watershed topographical information is required in hydrologic analysis, supporting efficient hydrologic model operation and managing water resources. Watershed topographical data extraction systems based on desktop GIS are abundant these days placing burdens for spatial data processing on users. This paper describes development of a Web-based Geographic Information Systems that can delineate the Geum River sub-basins and extract watershed topographical data in real time. Through this system, users can obtain a watershed boundary by selecting outlet location and then extracting topographical data including watershed area, boundary length, average altitude, slope distribution about the elevation range with Web browsers. Moreover, the system provides watershed hydrological data including land use, soil types, soil drainage conditions, and NRCS(Natural Resources Conservation Service) curve number for hydrologic model operation through grid overlay technique. The system operability was evaluated with the hydrological data of WAMIS(Water Management Information System) with the government operation Web site as reference data.

Integration of Total Pollution Load Management System and Environmental Impact Assessment related System (수계 오염총량관리제와 환경영향평가제도의 통합운영방안)

  • Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.5
    • /
    • pp.359-367
    • /
    • 2003
  • The total pollution load management system of watershed has been implemented upon Special Law pertaining to the Han River Watershed Water Quality Improvement and Residents Support, Special Law pertaining to the Nakdong River Watershed Water Management and Residents Support, Special Law pertaining to the Youngsan River Watershed Water Management and Residents Support, and Special Law pertaining to the Seomjin River Watershed Water Management and Residents Support in Korea since 2002. But many other similar systems with total pollution load management system of watershed are being operated separately or independently, even though its purpose is nearly same with those of the total maximum pollutants load management in Law on Water Quality Environmental Protection, environmental impact assessment(EIA) in Law of Impact Assessment on Environment, Transportation and Disaster and Pre-environmental assessment of Environmental Policy Act. Therefore the contents of total pollution load management system of watershed and many other related systems could be overlapped and at some times have inconsistency among them. This study suggests first the integrated operation of total pollution load management system of watershed, EIA, pre-environmental assessment, urban planning, and sewage planning and secondly EIA system development by integration of EIA and pre-environmental assessment and strategic environmental assessment(SEA).

Estimating the Pollution Delivery Coefficient with Consideration of Characteristics Watershed Form and Pollution Load Washoff (유역형상과 오염부하배출 특성을 고려한 유달계수 산정)

  • Ha, Sung-Ryong;Park, Jung-Ha;Bae, Myung-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.79-87
    • /
    • 2007
  • The performance of a stream water quality analysis model depends upon many factors attributed to the geological characteristics of a watershed as well as the distribution behaviors of pollutant itself on a surface of watershed. Because the model run has to import the pollution load from the watershed as a boundary condition along an interface between a stream water body and a watershed, it has been used to introduce a pollution delivery coefficient to behalf of the boundary condition of load importation. Although a nonlinear regression model (NRM) was developed to cope with the limitation of a conventional empirical way, this an up-to-date study has also a limitation that it can't be applied where the pollution load washed off (assumed at a source) is less than that delivered (observed) in a stream. The objective of this study is to identify what causes the limitation of NRM and to suggest how we can purify the process to evaluate a pollution delivery coefficient using many field observed cases. As a major result, it was found what causes the pollution load delivered to becomes bigger than that assumed at the source. In addition, the pollution load discharged to a stream water body from a specific watershed was calculated more accurately.

Development of Synthetic Unit Hydrograph for Estimation of Runoff in Ungauged Watershed (미계측 유역의 유출량 산정을 위한 합성단위도 개발)

  • Choi, Yong Joon;Kim, Joo Cheol;Jeong, Dong Kug
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.532-539
    • /
    • 2010
  • The synthetic unit hydrograph is developed and verified using Nash model and characteristic velocities considering geomorphological dispersion in this present study. Application watersheds are selected 5 subwatersheds of Bocheong basin. The mean and variance of hillslope and stream path length are estimated in each watershed with GIS. Characteristic velocities are calculated using estimated path lengths and moment characteristics of rainfall-runoff data. Characteristic velocities of random devised 7 ungauged watersheds are estimated through regional analysis of chracteristic velocities in guaged watershed. And Nash model parameters and IUH are derived using characteristic velocities and path length in the gauged and ungauged watershed. The result to compare of IUH about gauged watershed and random devised ungauged watershed in application watershed presents coherently hydrologic response characteristics that peak discharge is reduced and peak time is extended. In conclusion, Developed synthetic unit hydrograph in this study expects that it is useful method to estimate runoff discharge for managing of water pollution in ungauged watershed.

Using GIS Spatial Analysis to Protect Critical Habitats in the Big Cyprus Watershed, South Florida (GIS 공간분석을 통한 남부 플로리다 Big Cyprus 분수계 보존서식지 보호)

  • Kim, Jin-Ho;Kim, Chang-Ho;Kim, Hyun-Woo
    • Journal of KIBIM
    • /
    • v.7 no.4
    • /
    • pp.31-38
    • /
    • 2017
  • Big Cyprus watershed, which is located in the Southwestern Florida and covers Everglades National Park that has high proportions of endangered species' habitats, plays an important role for the entire Florida ecosystem. Due to the rapid urbanization and high population growth, however, the watershed has been continuously polluted and the current regional watershed plan is not created to accommodate the speed of growth. The purpose of this study is to suggest proper protection policies and strategies for the Big Cyprus watershed by employing the Inverse Distance Weighted interpolation tool in Geographic Information System. The findings show that conservation priorities should be given in the North and South portion of the watershed area, which are proven to be the most important aisle for the habitats in the Big Cyprus. The study concludes with policy suggestions that local environmental planners should concentrate for adopting their new watershed plan in the near future.

A Study on the Inquiry-Based Water Environmental Education Model with Watershed Concept: Focusing on the ENVISION Program (유역 개념을 중심으로 한 탐구 기반의 물 환경교육 모형에 관한 연구: ENVISION 프로그램을 중심으로)

  • Lee, Du-Gon
    • Hwankyungkyoyuk
    • /
    • v.19 no.3
    • /
    • pp.150-164
    • /
    • 2006
  • This study reviewed a recently developed environmental education model 'ENVISION' and analyzed the value of the ENVISION program with environmental education(EE) perspective. Also this study proposed a prototype model of a inquiry-based water environmental education model with watershed concepts as a result of discussion of tills research. In the review of ENVISION, this research followed the theoretical framework of 'Inquiry-Based EE' that was previously proposed by the author. The ENVISION was characterized in tills research as two directions: watershed and scientific inquiry. Tills research argued that the watershed concept has a potentially very good meaning in EE because watershed enables 'holistic' view in EE area, and that the scientific inquiry in ENVISION seeks evidence-based explanation about local watershed environmental problems. That belongs to the scientific inquiry, which is also 'Inquiry-Based EE' and has internal value under EE perspective. Finally, this research proposed a prototype EE model that is about watershed concept, and is based on inquiry as general sense (scientific and insightful inquiries) and 'Environmental Studies for EE, (ESEE)' as the inquiry directions. The proposed model can be said a combination of the watershed concept and inquiry-based EE, and it seems that the model materializes better the EE nature than the ENVISION model.

  • PDF

THE WATERSHED MANAGEMENT AND ASSESSMENT USING GIS BASED ON HYDROLOGICAL AND LANDSCAPE ECOLOGICAL ANALYSIS

  • Lee, Ju-Young;Hopkins, James
    • Water Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.9-20
    • /
    • 2006
  • The watersheds are functional geographical areas that integrate a variety of environmental and ecological processes and human impacts on landscapes. Geographical assessments using GIS recognize the relationship between interdependence of resources and ecological/environmental components in watersheds. They are useful methodology for viable long term natural resource management. This paper performs through the using hydrological analyses, landscape ecological analyses, remote sensing, and GIS. Indicators are items or measures that represent key components of the small watersheds, and they are developed to be evaluated. Some indicators are described that they represent watershed condition and trend as well as focus on physical, biological and chemical properties of small watershed. Also, ecological functions such as stability, resilience, and sensitivity are inferred from them. The model implemented in GIS allows to reflect the ecological and hydrological functioning of watershed. Methodology from image analysis, landscape ecological analysis, spatial interpolation, and numerical process modeling are integrated within GIS to provide assessment for eco-logical/environmental condition. Results are described from the small watershed of Gwynns Falls in Baltimore County and Baltimore City, Maryland, an area of about 66.5 square miles. The small watershed within Gwynns Falls watershed are subject to a number of land-use. But it is predominantly urban, with significantly lesser amounts of forest and agriculture. The increasing urbanization is ass-coiated with ecological/environmental impacts and citizen conflicts.

  • PDF

Hydrologic Component Analysis of the Seolma-Cheon Watershed by Using SWAT-K Model (SWAT-K 모형을 이용한 설마천 유역의 수문성분 해석)

  • Kim, Nam-Won;Lee, Ji-Eun;Chung, Il-Moon;Kim, Dong-Pil
    • Journal of Environmental Science International
    • /
    • v.17 no.12
    • /
    • pp.1363-1372
    • /
    • 2008
  • In this study, long term semi distributed hydrologic model SWAT-K(Korea) is applied to the Seolma-Cheon watershed to analyze the hydrological components. Seolma-Cheon watershed has been operated as the test watershed of Korea Institute of Construction Technology for 13 years. Therefore it has an enough hydrologic data to analyze the hydrologic characteristics of small watershed. Especially, for the proper runoff analysis of steep watershed, calibration is performed reflecting the regression equation of slope and slope length. The simulated discharge shows good agreement with the observed one and the simulated evapotranspiration and groundwater discharge also show satisfactory results. Finally we presents the ratio of major hydrologic components for 3 years with those obsrved ones. This study is the basic research for future analyses such as relationship between hydrologic components and vegetation, watershed sediment nonpoint sources discharge etc.

Simulation of Moving Storm in a Watershed Using Distributed Models

  • Choi, Gye-Woon;Lee, Hee-Seung;Ahn, Sang-Jin
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.1-16
    • /
    • 1994
  • In this paper distributed models for simulating spatially and temporally varied moving storm in a watershed were developed. The complete simulation in a watershed is achieved through two sequential flow simulations which are overland flow simulation and channel network flow simulation. Two dimensional continuity equation and momentum equation of kinematic approximation were used in the overland flow simulation. On the other hand, in the channel network simulation two types of governing equations which are one dimensional continuity and momentum equations between two adjacent sections in a channel, and continuity and energy equations at a channel junction were applied. The finite difference formulations were used in the channel network model. Macks Creek Experimental Watershed in Idaho, USA was selected as a target watershed and the moving storm on August 23, 1965, which continued from 3:30 P.M. to 5:30 P.M., was utilized. The rainfall intensity fo the moving storm in the watershed was temporally varied and the storm was continuously moved from one place to the other place in a watershed. Furthermore, runoff parameters, which are soil types, vegetation coverages, overland plane slopes, channel bed slopes and so on, are spatially varied. The good agreement between the hydrograph simulated using distributed models and the hydrograph observed by ARS are Shown. Also, the conservations of mass between upstreams and downstreams at channel junctions are well indicated and the wpatial and temporal vaiability in a watershed is well simulated using suggested distributed models.

  • PDF

Impact of Urbanization on Hydrology of Geumho River Watershed: A Model Study (금호강 유역의 수문환경에 대한 도시화의 영향: 모형 연구)

  • Kim, Jae-Chul;Lee, Jiho;Yoo, Chulsang;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.535-542
    • /
    • 2007
  • The Geumho river watershed located in the middle of the Nakdong river has been threatened by high population growth and urbanization. Of concern specifically is the potential impact of future developments in the watershed on the reduction of base flow and the consequent risk of degradation of ecological habitats in Geumho river. Anticipated increase in imperviousness, on the other hand, is expected to elevate flood risk and the associated environmental damage. A watershed hydrology based modeling study is initiated in this study to assist in planning for sustainable future development in the Geumho river watershed. The Soil and Water Assessment Tool (SWAT) is selected to model the impact of urbanization in the Geumho river watershed on the hydrologic response thereof. The modeling results show that in general the likelihood that the watershed will experience high and low stream flows will increase in view of the urbanization so far achieved.