• Title/Summary/Keyword: WAM model

Search Result 33, Processing Time 0.023 seconds

Reproduction of Extreme Waves Caused by Typhoon MAEMI with Wave Hindcasting Method, WAM (I) - Corrections of directional spreading division and limitation on wave development of WAM model - (제3세대 파랑추산모형을 이용한 태풍매미의 극한파랑 재현 (I) - WAM 모형의 파향격자 분할법 및 파 발달 제한조건의 수정 -)

  • Shin Seung-Ho;Hong Key-yong;Choi Hark-Sun;Hashimoto Noriaki
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.211-218
    • /
    • 2004
  • The WAM wave model has been widely used for wave hindcasting in the ocean by many domestic and foreign researchers due to its relative simplicity and high accuracy. As this model was originally developed for the condition cf deepwater and comparatively coarse grid size covering wide area, it might produce in a fault result mused by the improper distribution of directional spreading. We extensively investigated involved problems based on WAM Cycle 4 model and suggested the improved WAM model so that it is applicable to both shallow water sea and fine mesh wave simulation. The modified WAM model is verified here by comparing the computed result with and the observed data at Ieodo Ocean Research Station for September of 2003.

  • PDF

Reproduction of Extreme Waves Caused by Typhoon MAEMI with Wave Hindcasting Method, WAM (I) - Corrections of directional spreading division and limitation on wave development of WAM model - (제3세대 파랑추산모형을 이용한 태풍매미의 극한파랑 재현 (I) - WAM 모형의 파향격자 분할법 및 파 발달 제한조건의 수정-)

  • Shin, Seung-Ho;Hong, Key-Yong;Choi, Hak-Sun;Noriaki Hashimoto
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.557-564
    • /
    • 2004
  • The WAM wave model has been widely used for wave hindcasting in the ocean by many domestic and foreign researchers due to its relative simplicity and high accuracy. As this model was originally developed for the condition of deepwater and comparatively coarse grid size covering wide area, it might produce in a fault result caused by the improper distribution of directional spreading. We extensively investigated involved problems based on WAM Cycle 4 model and suggested the improved WAM model so that it is applicable to both shallow water sea and fine mesh wave simulation The modified W AM model is verified here by comparing the computed result with and the observed data at Ieodo Ocean Research Station for September of 2003.

Development of the Combined Typhoon Surge-Tide-Wave Numerical Model 2. Verification of the Combined model for the case of Typhoon Maemi (천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 2. 태풍 매미에 의한 해일-조석-파랑 모델의 정확성 검토)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.79-90
    • /
    • 2009
  • This paper presents the development of dynamically combined Typhoon generated surge-tide-wave numerical model which is applicable from deep to shallow water. The dynamically coupled model consists of hydrodynamic module and wind wave module. The hydrodynamic module is modified from POM and wind wave module is modified from WAM to be applicable from deep to shallow water. Hydrodynamic module computes tidal currents, sea surface elevations and storm surges and provide these information to wind wave module. Wind wave mudule computes wind waves and provides computed information such as radiation stress, sea surface roughness and shear stress due to winds. The newly developed model was applied to compute the surge, tide and wave fields by typhoon Maemi. Verification of model performance was made by comparison of measured waves and tide data with simulated results.

A Study on the Extension of WAM for Shallow Water (WAM모형의 천해역 확장에 관한 연구)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.148-156
    • /
    • 2008
  • WAM(WAve Model), deep water wave model has been extended to the region of shallow water, incorporating wave breaking, and triad wave interaction. To verify this model, two numerical simulations for hydraulic experiments of Chawla et al.(1998) and Beji and Battjes(1993) are performed. The computed results show good agreements with measured ones. To identify its applicability to real sea, it is applied to storm wave modelling for typhoon Maemi. Numerical results compared with measured ones at Geoje, Busan and Ulsan show reasonable wave height estimations.

Wave Simulation on Youngil Bay by WAM Extended to Shallow Water (천해역으로 확장된 WAM모형에 의한 영일만 파랑모의)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.511-520
    • /
    • 2007
  • WAM(WAve Model), deep water wave model has been extended to the region of shallow water, incorporating wave breaking, and triad wave interaction. To verify the model, numerical simulation of waves in Youngil bay, Pohang is performed and the simulated results show good agreements with measured wave data sets, one station at the mouth of bay and two stations inside the bay. As waves propagate toward the shore, wave height gradually diminishes by bottom friction and wave breaking, and wave direction, initially NE changes normal to the shore due to depth refraction.

Application of Dynamically Coupled POM-WAM to Undertow Simulation (동적 결합형 POM-WAM 모형의 해향저류 모의 적용)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Suh, Kyung-Duck;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.182-191
    • /
    • 2011
  • In the present study, the dynamically coupled POM-WAM of Chun et al.(2009) was applied to the numerical simulation of undertow, one of the nearshore currents. To improve the accuracy of the numerical model results in surf zone, the transport equation of the surface roller was solved, and its effects were incorporated into the present numerical model. The numerical model has been applied to two hydraulic experiments of Okayasu and Katayama(1992) and Cox and Kobayashi(1997). The numerical results were compared with the hydraulic experimental results to give a good concurrence. It is concluded that the present numerical model can be applied to the shallow water region including surf zone.

Numerical Simulation of Typhoon-generated Waves using WAM with Implicit Scheme (음해법을 이용한 WAM모형의 태풍파랑 수치모의)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.294-300
    • /
    • 2006
  • Implicit numerical scheme using fractional step method and FCT is used to improve the computational efficiency of WAM. Square wave test and simulation of typhoon generated waves are conducted to verify the numerical scheme. The applied scheme shows much less numerical diffusion and due to the implicit character of the scheme much larger time steps can be used without numerical instability. For typhoon MAEMI, comparison between the numerical results and the measured data shows good agreement.

A Study on the Statistical Characteristics and Numerical Hindcasts of Storm Waves in East Sea (동해 폭풍파랑의 통계적 특성과 파랑 후측모의 실험에 관한 연구)

  • Chun, Hwusub;Kang, Tae-Soon;Ahn, Kyungmo;Jeong, Weon Mu;Kim, Tae-Rim;Lee, Dong Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.2
    • /
    • pp.81-95
    • /
    • 2014
  • In the present study, the statistical analysis on the storm waves in the East Sea have been carried out, and the several storm waves were reproduced by the modified WAM as a first step for the accurate and prompt forecasting and warning against the swell waves in East Sea. According to the present study, the occurrences of the storm waves from the North were the most probable, while the waves from the Northeast were most frequently observed. It was found that the significant wave heights of storm waves from the North and Northern northeast were larger than those of storm waves from the Northeast. But due to long fetch distance, the significant wave periods of storm waves from the Northesast were longer than those of North and Northern northeast. In addition to the wave analysis, the numerical experiments for the storm waves in East Sea were carried out using the modified WAM, and three periods of storm waves in 2013 were calculated. The numerical results were well agreed with wave measurements. However the numerical simulation results in shallow water region showed lower accuracies compared to deep water, which might be due to lower resolution of wind field and bottom topography caused by large grid size, 5 minute, adopted in the present study. Overall computational efficiency of the modified WAM found to be excellent compared to original WAM. It is because the modified WAM adopted the implicit scheme, thereby the present model performed 10 time faster than original WAM in computation time.

Robust Filtering Algorithm for Improvement of Air Navigation System (항행시스템 성능향상을 위한 강인한 필터링 알고리즘)

  • Cho, Taehwan;Kim, Jinhyuk;Choi, Sangbang
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.2
    • /
    • pp.123-132
    • /
    • 2015
  • Among various fields of the CNS/ATM, the surveillance field which includes ADS-B system, MLAT system, and WAM system is implemented. These next generation systems provide superior performance in tracking aircrafts. However, They still have error. In this paper, filtering algorithm is proposed in order to enhance aircraft tracking performance of ADS-B, MLAT, and WAM systems. The proposed method is a Robust Interacting Multiple Model filter, called Robust IMM filter, that improves IMM filter. The Robust IMM filter can not only improves the aircraft tracking performance but also track aircraft continually using estimates calculated from the filter when data losses occur. The simulation results of the proposed aircraft tracking methods show that the filtering data provides a better performance up to an average of 19.21%.

Development of the Combined Typhoon Surge-Tide-Wave Numerical Model Applicable to Shallow Water 1. Validation of the Hydrodynamic Part of the Model (천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 1. 해수유동 모델의 정확성 검토)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.63-78
    • /
    • 2009
  • This paper presents the development of dynamically combined Typhoon generated surge-tide-wave numerical model which is applicable to shallow water. The newly developed model is based on both POM (Princeton Ocean Model) for the surge and tide and WAM (WAve Model) for wind-generated waves, but is modified to be applicable to shallow water. In this paper which is the first paper of the two in a sequence, we verified the accuracy and numerical stability of the hydrodynamic part of the model which is responsible for the simulation of Typhoon generated surge and tide. In order to improve the accuracy and numerical stability of the combined model, we modified algorithms responsible for turbulent modeling as well as vertical velocity computation routine of POM. Verification of the model performance had been conducted by comparing numerical simulation results with analytic solutions as well as data obtained from field measurement. The modified POM is shown to be more accurate and numerically stable compare to the existing POM.