• Title/Summary/Keyword: W-Mo 광화

Search Result 25, Processing Time 0.03 seconds

Revaluation of Strategic Metallic Commodities in the Metallic Mines within Taebaeksan-Hwanggangri Metallogenic Belt (태백산-황강리 광화대 금속광산의 전략금속광종 재평가)

  • Lee, Jae-Ho;Heo, Chul-Ho;Chi, Se-Jung
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.287-297
    • /
    • 2008
  • In order to estimate the preliminary development feasibility according to the commodity, the content of 8 strategic metallic commoditites(Pb, Zn, Cu, Fe, Mo, W, Au, U) in 68 ore specimens obtained from 34 metallic mines within the Taebaegsan-Hwanggangri mineralized zone were analyzed. Analytical results are as follows. The ore specimen of Sangdong mine contained 23% copper(cut-off grade=0.7%) and those of Cheongil and Samhwanghak mines contained average 5% zinc(cut-off grade=2.0%). Especially, the detailed investigation on the above-mentioned mines is required. And, in case of molybdenum(cut-off grade=0.02%) content in Yeonhwa No. 2(0.04%) and Hong-cheon mine(0.02%), and lead(cut-off grade=0.58%) content in Wongasa mine(0.70%), and gold(cut-off grade=10ppm) content in Dongmyoung(279ppm) and Samhwanghak mine(251ppm), it is required to elastically carry out the revaluation on reopening of mines in terms of the international metal price. On the other hand, in case of uranium, iron and tungsten, it is thought that there are no mines with the development potential value in this study.

The Origin and Evolution of the Mesozoic Ore-forming Fluids in South Korea: Their Genetic Implications (남한의 중생대 광화유체의 기원과 진화특성: 광상 성인과의 관계)

  • Choi, Seon-Gyu;Pak, Sang-Joon
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.517-535
    • /
    • 2007
  • Two distinctive Mesozoic hydrothermal systems occurred in South Korea: the Jurassic/Early Cretaceous(ca. $200{\sim}130$ Ma) deep-level ones during the Daebo orogeny and the Late Cretaceous/Tertiary(ca. $110{\sim}45$ Ma) shallow hydrothermal ones during the Bulgugsa event. The Mesozoic hydrothermal system and the metallic mineralization in the Korean Peninsula document a close spatial and temporal relationship with syn- to post-tectonic magmatism. The calculated ${\delta}^{18}O_{H2O}$ values of the ore-forming fluids from the Mesozoic metallic mineral deposits show limited range for the Jurassic ones but variable range for the Late Cretaceous ones. The orogenic mineral deposits were formed at relatively high temperatures and deep-crustal levels. The mineralizing fluids that were responsible for the formation of theses deposits are characterized by the reasonably homogeneous and similar ranges of ${\delta}^{18}O_{H2O}$ values. This implies that the ore-forming fluids were principally derived from spatially associated Jurassic granitoids and related pegmatite. On the contrary, the Late Cretaceous ferroalloy, base-metal and precious-metal deposits in the Taebaeksan, Okcheon and Gyeongsang basins occurred as vein, replacement, breccia-pipe, porphyry-style and skarn deposits. Diverse mineralization styles represent a spatial and temporal distinction between the proximal environment of subvolcanic activity and the distal to transitional condition derived from volcanic environments. The Cu(-Au) or Fe-Mo-W deposits are proximal to a magmatic source, whereas the polymetallic or the precious-metal deposits are more distal to transitional. On the basis of the overall ${\delta}^{18}O_{H2O}$ values of various ore deposits in these areas, it can be briefed that the ore fluids show very extensive oxygen isotope exchange with country rocks, though the ${\delta}D_{H2O}$ values are relatively homogeneous and similarly restricted.

Geochemical Exploration Technics in the Pungchon Limestone Area (풍촌 석회암지대 탐사에 적용될 새 지화학탐사법 연구)

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.23 no.4
    • /
    • pp.369-381
    • /
    • 1990
  • Most of significant ore deposits in South Korea such as the Sangdong W - Mo, the Yeonhwa Pb-Zn and the Geodo Cu-Fe skarn ore deposits occur at the southern limb of the Hambaeg syncline in the Taebaeg Basin. The mineralization took place in the interbedded limestone of the Myobong Formation and the Pungchon limestone of the Great Limestone Group of the Cambrian age, generally striking E-W and dipping 25-30 degrees north. There are no outcrops of the skarn-type orebody at the northern limb of the syncline. In order to find a clue of a possible hidden orebody localized at the limestones in the northern limb, a lithogeochemical exploration by using carbon isotope and some elements such as Si, Ca, Fe and Al at the Sangdong Mine area has been attempted as for a modelling study. For this study, 45 samples from the Pungchon limestone which do not show any megascopic indication of mineralization have been taken in both the mineralized zone and the unminerallized zone at the Sangdong Mine area. Analytical data show that there are big differences in the contents of CaO and $Al_2O_3$ between the Pungchon limestone of the mineralized zone and that of the unmineralized zone. Carbon isotope data exhibit that ${\delta}^{13}C$ values of the Pungchon limestone in the mineralized zone are highter than those in the unmineralized zone. The difference in the analytical values of CaO, $Al_2O_3$ and the carbon isotope between the mineralized and the unmineralized zones is as follows ; Unminerallized zone Mineralized zone CaO 51.3% 43.5% $Al_2O_3$ 0.6% 2.4% ${\delta}^{13}C$ -0.39 permil -0.56 permil $Fe_2O_3$ 0.9% 1.4% $SiO_2$ 3.0% 2.4% The decrease in the Si content of the Pungchon limestone in the mineralized zone is contrary to the result of the previous study (Moon, 1987). On the basis of identification of the increase in the Al content of the limestone in the mineralized zone, it could be deduced that the decrease in the Si content of the Pungchon limestone might be due to the result of increase in the alteration products mainly occurred along fracture-system such as joint cracks or minor faults and that the phenomena shown by the Si and Al content in the mineralized zone might be derived from the thermal effect of granite extended mineralizing activity to the overlied limestone on the surface. Higher mean values of Fe and Al as well as lower mean values of carbon content and the ${\delta}^{13}C$ than mean values of those in the Pungchon limestone at the northern limb of the Hambaeg Syncline may be applicable in exploration for blind orebodies.

  • PDF

Re-evaluation of Genetic Environments of Zinc-lead Deposits to Predict Hidden Skarn Orebody (스카른 잠두 광체 예측을 위한 아연-연 광상 성인의 재검토)

  • Choi, Seon-Gyu;Choi, Bu-Kap;Ahn, Yong-Hwan;Kim, Tae-Hyeong
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.301-314
    • /
    • 2009
  • The Taebaeksan mineralized province, which is the most important one in South Korea, is rich in zinc-lead-tungsten-iron-copper-molybdenum-silver-gold mineral resources and has a diversity of deposit styles. These deposits principally coexist in time and space with porphyry-related epigenetic deposit such as skarn, hydrothermal replacement, mesothermal vein, and Carlin-like deposits. The magmatic-hydrothermal systems in the Taebaek fold belt is genetically characterized by the Bulguksa subvolcanic rocks(ca. $110{\sim}50\;Ma$) related to northwestward subduction of the paleo-Pacific Plate. The most important zinc-lead deposits in the area are the Uljin, Yeonhwa II and Shinyemi skarn, the Janggun hydrothermal replacement, and the Yeonhwa I intermediate-mixed (skarn/hydrothermal replacement) ones. In the present study, we present a compilation of metal production and mineral assemblage of the zinc-lead deposits. The metal difference of deposit styles in the area indicates a cooling path from intermediate-sulfidation to low-sulfidation state in the polymetallic hydrothermal system, reflecting spatial proximity to a magmatic source.

Magnetite and Scheelite-Bearing Skarns in Ulsan Mine, Korea (울산 광산의 철-텅그스텐 스카른화작용)

  • Choi, Seon-Gyu;Imai, Naoya
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.41-54
    • /
    • 1993
  • The Ulsan Fe-W deposit, which can be classified as a calcareous skarn deposit, is represented by ore pipe consisting principally of magnetite and lesser amounts of scheelite with minor sulphides, sulphosaits, arsenides, sulpharsenides, etc. At Ulsan mine, metasomatic processes of skarn growth may be divided broadly into two stages based on the paragenetic sequence of calc-silicate minerals and their chemical composition; early and late skarn stages. Early stage has started with the formation of highly calcic assemblages of wollastonite, diopsidic clinopyroxene and nearly pure grossular, which are followed by the formation of clinopyroxenes with salite to ferrosalite composition and grandite garnets with intermediate composition. Based on these calc-silicate assemblages, the temperatures of early skarn formations have been in the ranges of $550^{\circ}$ to $450^{\circ}$. The calc-silicate assemblages formed during the earlier half period of late skarn stage show the enrichment of notable iron and slight manganese, and the depletion of magnesium; clinopyroxenes are hedenbergitic, and grandite garnets are andraditic. The formation temperatures during this skarn stage are inferred to have been in the range of $430^{\circ}$ to $470^{\circ}C$ at low $X_{CO_2}$ by data from fluid inclusions of late andraditic garnets. The later half period of late skarn stage is characterized by the hydrous alteration of pre-existing minerals and the formation of hydrous silicates. The main iron-tungsten mineralization representing prominent deposition of magnetite immediately followed by minor scheelite impregnation has taken place at the middle of early skarn stage, while complex polymetallic mineralization has proceeded during and after the late skarn stage. Various metals and semimetals of Fe, Ni, Co, Cu, Zn, As, Mo, Ag, In, Sn, Sb, Te, Pb and Bi have been in various states such as native metal, sulphides, arsenides, sulphosaits, sulpharsenides and tellurides.

  • PDF

Copper Mineralization in the Haman-Gunbuk Area, Gyeongsangnamdo-Province: Fluid Inclusion and Stable Isotope Study (경상남도 함안-군북지역의 동광화작용: 유체포유물 및 안정동위원소 연구)

  • 허철호;윤성택;최상훈;최선규;소칠섭
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.75-87
    • /
    • 2003
  • The Haman-Gunbuk mineralized area is located within the Cretaceous Gyeongsang Basin along the southeastern part of the Korean peninsula. Major ore minerals, magnetite, scheelite, molybdenite and chalcopyrite, together with base-metal sulfides and minor sulfosalts, occur in fissure-filling tourmaline, quartz and carbonates veins contained within Cretaceous sedimentary and volcanic rocks anu/or granodiorite (118{\pm}$3.0 Ma). The ore and gangue mineral paragenesis can be divided into three distinct stages: Stage 1, tourmaline+quartz+Fe-Cu ore mineralization; Stage II, quartz+sulfides+sulfosalts+carbonates; Stage 111, barren calcite. Earliest fluids are recorded in stage I and early por-tions of stage II veins as hypersaline (35~70 equiv. wt.% NaCl+KCl) and vapor-rich inclusions which homogenize from ~30$0^{\circ}C$ to $\geq$50$0^{\circ}C$. The high-salinity fluids are complex chloride brines with significant concentrations of sodium, potassium, iron, copper, and sulfur, though sulfide minerals are not associated with the early mineral assemblage produced by this fluid. Later solutions circulated through newly formed fractures and reopened veins, and are recorded as lower-salinity(less than ~20 equiv. wt.% NaCl) fluid inclusions which homogenize primarily from ~200 to 40$0^{\circ}C$. The oxygen and hydrogen isotopic compositions of fluid in the Haman-Gunbuk hydrothermal system represents a progressive shift from magmatic-hydrothermal dominance during early mineralization stage toward meteoric-hydrothermal dominance during late mineralization stage. The earliest hydrothermal fiuids to circu-late within the granodiorite stock localiring the ore body at Haman-Gunbuk could have exsolved from the crystal-lizing magma and unmixed into hypersaline liquid and $H_2O$-NaCl vapor. As these magmatic fluids moved throughfractures, tourmaline and early Fe, W, Mo, Cu ore mineralization occurred without concomitant deposition of othersulfides and sulfosalts. Later solutions of dominantly meteoric origin progressively formed hypogene copper and base-metal sulfides, and sulfosalt mineralization.

A Study on the Precipitation Mechanism of Quartz Veins from Sangdong Deposit by Analyses of Vein Texture and Trace Element in Quartz (상동광산 석영맥의 조직 및 석영의 미량원소 분석을 통한 광맥 침전 기작 도출)

  • Youseong Lee;Changyun Park;Yeongkyoo Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.239-257
    • /
    • 2023
  • Sangdong deposit, a W-Mo skarn deposit, is located in Taebaeksan mineralized district, hosting vertically developed scheelite-quartz veins that formed at the late ore-forming stage. In this study, we tried to examine the geochemical signatures of ore-forming fluids and vein-forming mechanisms by analyzing the micro-texture of quartz veins and trace element concentrations of quartz. As a result of texture analyses, quartz veins in the hanging wall orebody and the foot wall orebody commonly exhibit the blocky and the elongate blocky texture, respectively, whereas quartz veins in the main orebody show both textures. These textural differences indicate that quartz veins from the hanging wall orebody were precipitated by the primary hydrofracturing due to H2O saturation in the igneous body with relatively high temperature and pressure at a vein-skarn stage, and after that, repeated hydrofracturing caused the formation of quartz veins from the main orebody and foot wall orebody. The results of trace element concentrations show that Li++Al3+↔Si4+ is a main substitution mechanism. However, those of the foot wall orebody were clearly divided into a Li+-dominated substitution and a Na+-, K+-dominated substitution. Considering that quartz veins from the foot wall orebody commonly show the elongate blocky texture, such a distinction means that it is a result of repeated injections of fluid with the different composition. Ti concentrations of quartz from the hanging wall, main, and the foot wall orebody are 28.6, 8.2, and 15.7 ppm in average, respectively. Given a proportional relationship between the precipitation temperature and Ti concentrations, it seems that quartz veins from the hanging wall orebody were precipitated at the highest temperature. Al concentrations of the hanging wall, main, and the foot wall orebody having an inverse relationship with fluid pH are 162.3, 114.2, and 182.5 ppm in average, respectively. These results show that Al concentrations in vein-forming fluids were not changed dramatically. Moreover, these concentrations are extremely low in comparison with the other hydrothermal deposits. This indicates that quartz in overall ore veins at Sangdong deposit was precipitated from the constant condition with slightly acidic to near neutral pH.

Effect of Compression Treatment on Characteristics of Solidified Cow Manure Fuel (우분 압착 처리가 우분 고체연료 특성에 미치는 영향)

  • Jeong, Kwang-Hwa;Kim, Jung-Kon;Lee, Dong-Jun;Cho, Won-Mo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.2
    • /
    • pp.67-74
    • /
    • 2016
  • This study was purposed to evaluate the characteristic changes of the solidified livestock manure fuel(SLMF) through the application of compression treatment process. The compression process led to an increase of VS/TS ratio (Volatile solids/Total solids ratio) and moisture removal effect of SLMF. The amount of leachate withdrawn from dairy cattle manure and Hanwoo manure by compression were 21~26%(w/w) and 15~20%(w/w), respectively. The specific gravity of the leachate of dairy cattle manure and Hanwoo manure were 1.01 and 0.99, respectively. The dehydrated cow manure was easily processed into ball-shaped solidified fuel. The drying time of the SLMF was proportional to the diameter of the solidified fuel. The highest heating value was observed in diameter range of 10~15mm SLMF. It is concluded that the higher heating value of 10~15mm SLMF was related with the amount of fibrous matter contained in the SLMF.

A Geochemical Study on Trace Elements of the Onjong Granite in Relation to Mineralization, Pyeonghae Area (평해지역 온정화강암 중 미량원소와 광화작용의 관계에 대한 지화학적 연구)

  • Lee, Jae Yeong;Lee, Jin Gook
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.245-258
    • /
    • 1992
  • The variations of certain major and trace elements of the Onjong granite mass was studied on the basis of petrological and geochemical characteristics and compared with those of the Eonyang-Yucheon granite masses in order to investigate the geochemical differences of the granitic rocks in relation to mineralization between Pb-Zn ore district and Pb-Zn-Mo-W ore district in Kyeongsang basin. The Onjong granite mass is classified into granodiorite and monzo-granite, and the Eonyang-Yucheon granite masses into monzo-granite by the Streckeisen's diagram. Between both granite masses there are clear differences in contents of certain major elements and lithophile trace elements. The former have high contents of Ca (2.94%), Mg (1.66%) and Sr (365 ppm), and low contents of K (3.52%), Na (3.51%), Rb (116 ppm), Ba (640 ppm) and Li (18.9 ppm), whereas the latter have high contents of K (4.02%), Na (4.28%), Rb (145 ppm), Ba (695 ppm) and Li (19.3 ppm), and low contents of Ca (1.42%), Mg (0.43%) and Sr (161 ppm). Except for Mo, there are not clear differences in chalcophile trace elements between two granite masses: the Onjong granite mass has higher Mo content (7.1 ppm) lnan that (1.7 ppm) of the Eonyang-Yucheon granite masses, but Pb and Zn contents are similar between the Onjong granite mass (Pb=8.7 ppm, Zn=37.1 ppm) and the Eonyang-Yucheon granite masses (Pb=7.8 ppm, Zn=39.8 ppm). Ca and Sr contents of the Onjong granite mass (Ca> 1.5%, Sr> 270 ppm) are higher than those of the Eonyang- Yucheon granite masses (Ca<1.5%, Sr<270ppm), and Rb/Sr, Rb-Rb/Sr and K-Rb/Sr ratios are clearly distinguishable between the Onjong granite mass(Rb/Sr<0.51, Rb-Rb/Sr>250 and K-Rb/Sr>5.2) and the Eonyang- Yucheon granite masses (Rb/Sr>0.51, Rb-Rb/Sr<250 and K-Rb/Sr<5.0). Thus, variations of certain major and trace elements and ratios are applicable as geochemical index to distinguish the types of mineralization of the ore districts related to the Cretaceous granitic rocks in the Kyeongsang basin.

  • PDF

Exploration for the Carlin-type Gold Deposits and Its Potential to Korea (칼린형 금광상 탐사와 국내 적용성 연구)

  • Park Maeng-Eon;Sung Kyu-Youl;Baek Seung-Gyun;Kim Pil-Geun;Kang Heung-Suk;Moon Young-Hwan
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.421-434
    • /
    • 2005
  • Abstract Based onthe characteristics of Carlin-type gold deposit in Nevada district, a potential in Korea is evaluated to the Yemi area where is structurally controlled by folds and trust fault. The fault of high angles are combined with a more permeable rocks such as the Yemi breccia and laminated silty limestone. The pattern of enrichment factors for Tl, Sb, As, Ag, Pb, Zn, Cu, Mo and W of limestones in the southern area are geochemically similar with those reported from the Carlin-type Bold deposit. Moreover, the oxygen and carbon isotopes show a hydrothermal alteration is widely developed in this area. According to the result of geophysical interpretation, stable isotope, alteration mineralogy, geochemical study, and geological structure, this mineralized zone may be extended to the M direction, so a detailed systematic exploration is required to identify this alteration zone.