Copper Mineralization in the Haman-Gunbuk Area, Gyeongsangnamdo-Province: Fluid Inclusion and Stable Isotope Study

경상남도 함안-군북지역의 동광화작용: 유체포유물 및 안정동위원소 연구

  • 허철호 (국립공원관리공단 자연생태연구소) ;
  • 윤성택 (고려대학교 지구환경과학과) ;
  • 최상훈 (충북대학교 지구환경과학과) ;
  • 최선규 (고려대학교 지구환경과학과) ;
  • 소칠섭 (고려대학교 지구환경과학과)
  • Published : 2003.04.01

Abstract

The Haman-Gunbuk mineralized area is located within the Cretaceous Gyeongsang Basin along the southeastern part of the Korean peninsula. Major ore minerals, magnetite, scheelite, molybdenite and chalcopyrite, together with base-metal sulfides and minor sulfosalts, occur in fissure-filling tourmaline, quartz and carbonates veins contained within Cretaceous sedimentary and volcanic rocks anu/or granodiorite (118{\pm}$3.0 Ma). The ore and gangue mineral paragenesis can be divided into three distinct stages: Stage 1, tourmaline+quartz+Fe-Cu ore mineralization; Stage II, quartz+sulfides+sulfosalts+carbonates; Stage 111, barren calcite. Earliest fluids are recorded in stage I and early por-tions of stage II veins as hypersaline (35~70 equiv. wt.% NaCl+KCl) and vapor-rich inclusions which homogenize from ~30$0^{\circ}C$ to $\geq$50$0^{\circ}C$. The high-salinity fluids are complex chloride brines with significant concentrations of sodium, potassium, iron, copper, and sulfur, though sulfide minerals are not associated with the early mineral assemblage produced by this fluid. Later solutions circulated through newly formed fractures and reopened veins, and are recorded as lower-salinity(less than ~20 equiv. wt.% NaCl) fluid inclusions which homogenize primarily from ~200 to 40$0^{\circ}C$. The oxygen and hydrogen isotopic compositions of fluid in the Haman-Gunbuk hydrothermal system represents a progressive shift from magmatic-hydrothermal dominance during early mineralization stage toward meteoric-hydrothermal dominance during late mineralization stage. The earliest hydrothermal fiuids to circu-late within the granodiorite stock localiring the ore body at Haman-Gunbuk could have exsolved from the crystal-lizing magma and unmixed into hypersaline liquid and $H_2O$-NaCl vapor. As these magmatic fluids moved throughfractures, tourmaline and early Fe, W, Mo, Cu ore mineralization occurred without concomitant deposition of othersulfides and sulfosalts. Later solutions of dominantly meteoric origin progressively formed hypogene copper and base-metal sulfides, and sulfosalt mineralization.

함안-군북 광화대는 한반도 남동부의 백악기 경상분지내에 위치해있다. 자철석, 회중석, 휘수연석, 황동석의 주광석 광물과 천금속 및 소량의 황염광물이 백악기 퇴적암, 화산암, 화강섬록암(118${\pm}$3.0 Ma)내에 발달된 열극을 충진한 전기석, 석영 및 탄산염맥내에서 산출된다. 광석 및 맥석광물들은 세 개의 광화시기로 구분될 수 있다: 광화 1기, 전기석+석영+철-동광석: 광화 2기, 석영+황화광물+황염광물+탄산염광물; 광화 3기, barren한 방해석. 광화 1기 및 2기의 초기 유체는 고염농도(35~70 equiv. wt.% NaCl+KCl)이며, 기상이 풍부하고 약 300$^{\circ}$~50$0^{\circ}C$의 온도에서 균질 되었다. 비록 황화물 광물이 상기유체에 의해 생성된 초기광물조합과 연관성이 없을지라도, 고염농도의 유체는 상당량의 나트륨, 칼륨, 철, 동, 황을 함유하는 염화물복합체 염수로 사료된다. 후기 용액은 새롭게 생성된 열극 및 맥을 따라 순환되었으며, 낮은 염농도($\leq$20 equiv. wt.% NaCl)이며 약200$^{\circ}$~40$0^{\circ}C$에서 균질화되었다. 할안-군북 열수계 유체의 산소-수소 동위원소조성은 광화초기에는 마그마성 열수의 특징을 보이다가 점차 광화후기로 가면서 순환수성 열수의 특징을 보여주고 있다. 함안-군복지역의 광체가 부존된 화강섬록암내에서 손환하고 있는 초기 열수성유체는 정출마그마에서 용리된후 고염농도의 액상을 함유한 유체와 $H_2O$-NaCl계의 기상으 함유한 유체로 불혼화되었다. 상기 마그마유체가 열극을 따라 이동하면서, 다른 황화광물과 황염광물의 침전없이 전기석 및 초기 철, 텅스텐, 몰리브데늄, 동 광화작용을 유발시켰다. 순환수기원의 후기광화용액은 동과 천금속 황화물, 황염광화작용을 촉발시켰다.

Keywords

References

  1. Econ. Geol v.75 Fluid inclusion in porphyry and skarn ore at Santa Rita Ahmad, S.N;Rose, A.W https://doi.org/10.2113/gsecongeo.75.2.229
  2. Geochim. Cosmochim. Acta v.49 Synthetic fluid inclusions in natural quartz. Ⅲ. Determination of phase equilibrium properties in the system H2O-NaCl to 1000 and 1500bars Bodnar, R.J;Burnham, C.W;Sterner, S.M https://doi.org/10.1016/0016-7037(85)90081-X
  3. Geochemistry of hydrothermal ore deposits Magmas and hydrothermal fluids Burnham, C.W;Barnes, H.L(ed)
  4. Econ. Geol v.79 A hydrogen and oxygen isotope study of the San Cristobal mine, Peru:Implications of the role of water to rock ratio for the genesis of wolframite deposits Campbell A.R;Rye, D.M;Petersen, U https://doi.org/10.2113/gsecongeo.79.8.1818
  5. Gyeongsang basin Korea. Econ. Environ. Geol v.27 The geochemistry of copper-bearing hydrothermal vein deposits in Goseong mining district (Samsan area) Choi, S.H;So,C.S;Kweon, S.H;Choi, K.J
  6. Geochim. Cosmochim. Acta v.51 Phase relations in the system NaCl-KCl-H₂O.Ⅲ: Solubilities of halite in vapor-saturated liquids above 445 and redetermination of phase equilibrium properties in the system NaCl-H₂O to 1000 and 1500bars Chou, I.M https://doi.org/10.1016/0016-7037(87)90185-2
  7. Econ. Geol v.74 The halite trend in hydrothermal solutions Cloke, P.L;Keseler, S.E https://doi.org/10.2113/gsecongeo.74.8.1823
  8. Economic Geol v.77 Physics and chemistry of the hydrothermal system at the Panguna porphyry copper deposit, Bougainville, Papua New Guinea Eastoe, C.J https://doi.org/10.2113/gsecongeo.77.1.127
  9. Economic Geol v.73 A fluid inclusion study of the Panguna porphyry copper deposit, Bougainville, Papua New Guinea Eastoe, C.J https://doi.org/10.2113/gsecongeo.73.5.721
  10. Geochim. Cosmochim. Acta v.73 Am empirical Na-K-Ca geothermometer for natural waters Fournier, R.O;Truesdell, A.H
  11. U. S. Geol. Sur. Prof. Paper v.440KK Compliation of stable isotope fractionation factors of geochemical interest Friedman, I;O'Neil, J.R
  12. Zeit. Neorgan. Khimii v.7 Preparation of sulfur dioxide for isotopic analysis Grinenko, V.A
  13. Econ. Geol v.58 Composition of fluid inclusions, Cave-in-Rock fluorite district, Illinois and Upper Mississippi Valley zinc-lead district Hall, W.E;Friedman, I https://doi.org/10.2113/gsecongeo.58.6.886
  14. Econ. Geol v.66 The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure Hass, J.L.Jr https://doi.org/10.2113/gsecongeo.66.6.940
  15. Econ. Geol v.73 magmaticvapor plumes and ground-water interaction in porphyry copper emplacement Henley R.W;McNabb, A
  16. Econ. Geol v.84 Evolution of hydrothermal fluids in the Park Premier Stock, Central Wasatch Mountains, Utah John, D.A https://doi.org/10.2113/gsecongeo.84.2.386
  17. Jour. Geol. Korea v.18 Lithochemistry of the Cretaceous granitoids with relation to the metallic ore deposits in Southern Korea Jin, M.S;Lee, S.M;Lee, J.S;Kim, S.J
  18. Memoirs in Celebration of 60th Birthday of Prof. C.M. Son Graintes and mineralization in Gyeongsang basin Lee, S.M
  19. Geochim. Cosmochim. Acta v.43 Oxygen isotopic fractionation in the system quart zanorthitewater Matsuhisa, Y;Goldsmith, J.R;clayton, R.N https://doi.org/10.1016/0016-7037(79)90099-1
  20. Jour. Chem. Phys v.18 The isotope chemistry of carbonates and a paleotemperature scale McCrea, J.M https://doi.org/10.1063/1.1747785
  21. Jour. Kor. Inst. Min. Geol v.3 Geology and ore deposits in the Hamna-Kunbuk copper district Moon, C.U;Kim, M.W;Lee, J.H;Choi, C.J
  22. Geochemistry of hydrothermal ore deposits Isotopes of sulfur and carbon Ohmoto, H;Rye, R.O;Barns, H.L(ed)
  23. Jour. Kor. Inst. Min. Geol v.18 Copper mineralization at Haman-Gunbuk mining district Park, H.I;Choi, S.W;Jang, H.W;Chae, D.H
  24. Geoch. Cosmochim. Acta v.50 Thermodynamics of NaCl in steam Pitzer, K.S;Pabalan, R.T https://doi.org/10.1016/0016-7037(86)90318-2
  25. U. S. Geol. Sur. Jour. Res v.6 Solubility of highly soluble salts in aqueous media Part 1. NaCl, KCl, CaCl₂, Na₂SO₄and K₂SO₄solubilities to 100C Potter, R.W.Ⅲ;Clynne, M.A
  26. Econ. Geol v.73 Freezing point depression of aqueous sodium chloride solutions Potter, R.W.Ⅲ;Clynne, M.A;Brown, D.L https://doi.org/10.2113/gsecongeo.73.2.284
  27. Econ. Geol v.84 Evidence for Cu(Ag) mineralization by magmaticmeteoric fluid mixing in Keweenawan fissure veins, Mamainse Point, Ontario Richard, J.P;Spooner, E.T.C https://doi.org/10.2113/gsecongeo.84.2.360
  28. Rev. Mineral v.12 Fluid inclusions Roedder, E
  29. Econ. Geol v.61 The carbon, hydrogen, and oxygen isotopic compositions of the hydrothermal fluids responsible for the leadzinc deposits at Providencia, Zacatecas, Mexico Rye, R.O https://doi.org/10.2113/gsecongeo.61.8.1399
  30. Econ. Geol v.69 Fluid inclusion and stable isotope studies on the Caspalca AgPbZnCu deposit, central Andes, Peru Rye, R.O;Sawkins, F.J https://doi.org/10.2113/gsecongeo.69.2.181
  31. Min. Geol v.31 Sulfur isotopes of the ore deposits related to felsic magmatism in the southern Korean Peninsula Sato, K;Shimazaki, H;Chon, H.T
  32. Econ. Geol v.73 Composition and origin of ore-forming fluids in a carbonate-hosted porphyry copper and skarn deposit: A fluid inclusion and stable isotopic study of Mines Gaspe, Quebec Shelton, K.L
  33. North American conference on tectonic control of ore deposits and the vertical and horizontalextent of ore systems. Proceedings volume: Rolla, Stable isotope and dluid inclusion studies of W-Sn-Ag deposits, Silver Mine district, southeastern Missouri: Tectonic control of water-rock interaction in a magmatic hydrothermal system Shelton, K.L;Lofstrom, D.M;Kisvarsanyi, G(ed);Grant, S.K(ed)
  34. Econ. Geol v.66 Hydrogen and oxygen isotope rations in minerals from porphyry copper deposits Sheppard, S.M.F;Nielsen, R.L;Taylor, H.P https://doi.org/10.2113/gsecongeo.66.4.515
  35. Min. Geol. Spec. Issue v.8 Evidence for porphyry-type mineralization in Southern Korea Sillitoe, R.H
  36. Econ. Environ. Geol v.35 Alteration and mineralization in the Xiaoxinancha porphyry copper deposit, Yianbin, China: Fluid inclusion and sulfur isotope study So, C.S;Bai-Lu Jin;Yun, S.T;Heo, C.H;Youm, S.J
  37. Econ. Geol v.80 Cu-bearing hydrothermal vein deposits in the Gyeongsang Basin, Republic of Korea So, C.S;Chi, S.J;Shelton, K.L https://doi.org/10.2113/gsecongeo.80.1.43
  38. Ame. Jour. Sci v.260 The system H₂O-NaCl at elevated temperatures and pressures Sourirajan, S;Kennedy, G.C https://doi.org/10.2475/ajs.260.2.115
  39. Econ. Geol v.69 The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition Taylor, H.P, Jr https://doi.org/10.2113/gsecongeo.69.6.843
  40. Nature v.228 Elemental variations of transport coefficients across density interfaces in multiple-diffusive system Turner, J.S;Shirtcliffe, T.G.L;Brewer, P.G https://doi.org/10.1038/2281083a0