• Title/Summary/Keyword: W/Mo

Search Result 759, Processing Time 0.023 seconds

A Study on Synthesis of (Mo.W)$\textrm{Si}_2$ Composites (이규화몰리.텅스텐 복합재료의 합성에 관한 연구)

  • Jang, Dae-Gyu;Abbaschian, R.
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.92-98
    • /
    • 1999
  • (Mo.W)Si$_2$ composites were fabricated by vacuum hot-pressing elemental Mo, W and Si powders at various temperatures. Elemental Mo, W and Si powders were alloyed in the proper proportions to form solid solutions. The microstructure and properties of these materials was characterized by using x-ray diffraction, optical microscopy, energy dispersive x-ray spectroscopy and Vicker's technique. It was found that tungsten was mainly substituted for Mo atoms, and made a completed solid solution of (Mo.W)Si$_2$ over 1$600^{\circ}C$. The lattice parameters and Vickers hardness increased largely with increasing reaction temperature by the most soluble elements, due to the solid-solution hardening.

  • PDF

Properties of $MoSi_2$ Based Composite Materials ($MoSi_2$ 복합재료의 특성)

  • Lee, Sang-Pill;Cho, Kyung-Seo;Lee, Jin-Kyung;Bae, Dong-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.93-98
    • /
    • 2009
  • The mechanical properties of $MoSi_2$ based composites containing various types of reinforcement, such as SiC, $ZrO_2$, and W, were investigated, based on detailed examinations of their microstructures. $MoSi_2$ based composites were fabricated at a temperature of $1350^{\circ}C$ using a hot-press device. The volume fraction of SiC and $ZrO_2$ particles in this composite system was fixed as 20%. The volume fraction of three types of W particles was changed from 10% to 30%. The characteristics of the $MoSi_2$ based composites were determined by means of optical microscopy and a three-point bending test. The addition of W particles to the $MoSi_2$ powders exhibited a sufficient improvement in the microstructure and mechanical property of the sintered $MoSi_2$ materials, compared to those of SiC and $ZrO_2$ particles. In particular, W/$MoSi_2$ composites containing W particles of 20 vol% represented a good flexural strength of about 530MPa at room temperature, accompanying a relative density of about 92%. The flexural strength of the W/$MoSi_2$ composites tended to decrease with an increase in the average size of the W particles.

Sonochemical Synthesis of Fullerene Oxides $[C_{70}O_n](n=1{\sim}2)$ Using Metal Hexacarbonyl Complexes $M(CO)_6$ (M=Cr, Mo, W) Under Air Atmosphere (공기 중에서 금속 헥사카르보닐 착물 $M(CO)_6$ (M=Cr, Mo, W)를 이용한 폴러렌 산화물 $[C_{70}O_n](n=1{\sim}2)$의 초음파화학 합성)

  • Ko, Weon-Bae;Park, Young-Hwan
    • Elastomers and Composites
    • /
    • v.40 no.3
    • /
    • pp.174-180
    • /
    • 2005
  • Sonochemical synthesis of fullerene oxides $[C_{70}O_n](n=1{\sim}2)$ by fullerene$[C_{70}]$ and metal hexacarbonyl complexes $M(CO)_6$(M=Cr, Mo, W) took place under air atmosphere. The reactivity of fullerene$[C_{70}]$ and several metal hexacarbonyl complexes $M(CO)_6$(M=Cr, Mo, W) under same ultrasonic condition increased in the order of $Mo(CO)_6$ > $W(CO)_6$ > $Cr(CO)_6$. The MALDI-TOF-MS, UV-visible spectra, and HPLC analysis confirmed that the products of sonochemical reaction were $[C_{70}O_n](n=1{\sim}2)$.

Relationship between inductively coupled plasma and crystal structure, mechanical and electrical properties of MoN coatings (유도결합 플라즈마 파워에 따른 MoN 코팅막의 결정구조 및 기계·전기적 특성 변화)

  • Jang, Hoon;Chun, Sung-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.2
    • /
    • pp.77-83
    • /
    • 2022
  • Nanocrystalline MoN coatings were prepared by inductively coupled plasma magnetron sputtering (ICPMS) changing the plasma power from 0 W to 200 W. The properties of the coatings were analyzed by x-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, nanoindentation tester and semiconductor characterization system. As the ICP power increases, the crystal structure of the MoN coatings changed from a mixed phase of γ-Mo2N and α-Mo to a single phase γ-Mo2N. MoN coatings deposited by ICPMS at 200 W showed the most compact microstructure with the highest nanoindentation hardness of 27.1 GPa. The electrical resistivity of the coatings decreased from 691.6 μΩ cm to 325.9 μΩ cm as the ICP power increased.

Synthesis and Properties of In-situ $MoSi_2$/W Composites ($MoSi_2$/W 복합재료의 합성과 성질에 관한 연구)

  • Jang, Dae-Kyu;Abbaschian, R.
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.938-944
    • /
    • 1998
  • $MoSi_2$/W composites were fabricated by vacuum hot press at $1600^{\circ}C$ under 30MPa for 3 hrs. The effects of the amount of tungsten in the composites was explained in terms of the microstructure and mechanical properties. Although tungsten was mainly substituted to Mo atoms forming a complete solid solution of (Mo.W).Si, (x= 1, 5, y=2, 3). the grain size of composites became smaller with the increase of tungsten added. Vickers hardness was increased with the increase of tungsten content due to the solid-solution hardening. On the other hand, toughness of composites decreased sharply by increasing the amount of tungsten. Optimum tungsten amount was determined to be a 10 vol% of composite. Indentation fracture toughness was calculated to be 4.5MPa\sqrt{m}$ in this composites, compared with $2.7MPa\sqrt{m}$ in pure $MoSi_2$.

  • PDF

Metal-Dinitrosyl Complexes(III) : Synthesis and Structural Study of Homo-, Hetero-dinuclear Molybdenum and Tungsten Complexes, $[Cl(phen)(NO)_2M({\mu}-pyz)M'(NO)_2(phen)Cl][ClO_4]_2 $(phen = 1,10-phenanthroline, pyz = pyrazine) (금속-디니트로실 착물 (제 3 보) : 몰리브덴과 텅스텐의 호모 및 헤테로 이핵 착물, $[Cl(phen)(NO)_2M({\mu}-pyz)M'(NO)_2(phen)Cl][ClO_4]_2 (phen=1,10-phenanthroline,\;pyz=pyrazine)$의 합성 및 구조에 대한 연구)

  • Sang-Oh Oh;Seong-Jong Mo
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.7
    • /
    • pp.655-661
    • /
    • 1993
  • The neutral monomeric compounds $[Mo(NO)_2Cl_2(phen)]$ and $[W(NO)_2Cl_2(phen)]$ (phen= 1,10-phenanthroline) have been prepared by reactions of polymeric compounds $[{Mo(NO)_2Cl_2}n],\;[{W(NO)_2Cl_2}n]$ with chelate ligands. Additions of one equivalent of silver(I) perchlorate to these cis-dinitrosyl compounds in acetone solution produce $[Mo(NO)_2(phen)(S)Cl][ClO_4]\;and\;[W(NO)_2(phen)(S)Cl][ClO_4]$ (S = acetone). The homo- and hetero-dinuclear complexes, $[Cl(phen)(NO)_2M(pyz)M'(NO)_2(phen)Cl][ClO_4]_2$ (M = Mo, W) and $[Cl(phen)(NO)_2M(pyz)M'(NO)_2(phen)Cl][C1O_4]_2$ (M = Mo, M' = W) have been prepared by these monocationic complexes with pyrazine ligand respectively. These complexes characterized by elemental analysis, $1^H-\;and\;^{13}C-NMR$, infrared, and UV-visible spectroscopy are reported. The spectral data indicate that homo- and hetero-dinuclear complexes were symmetrical structures of $C_{2v}$.

  • PDF

Study on Oxidation Behavior of (W,Mo)$Si_2$ Powders in Air at 400, 500 and $600^{\circ}C$

  • Peizhong, Feng;Xuanhui, Qu;Xiaohong, Wang;Farid, Akhtar
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1149-1150
    • /
    • 2006
  • The oxidation of (W,Mo)$Si_2$ powders has been investigated at 400, 500 and $600^{\circ}C$ for 12.0 hours in air. It was shown that the low temperature oxidation resistance of (W,Mo)$Si_2$ was worse than that of $MoSi_2$, and they showed great changes in mass, volume and colour. Especialy at $500^{\circ}C$, the amount of volume expansion of (W,Mo)$Si_2$ was as high as about $7\sim8$ times and color changed from black to yellow after 4.0h with $MoO_3$, $WO_3$, (W,Mo)$O_3$ and amorphous $SiO_2$ as main reaction products. The mass gain and oxidation rate were relatively slower at $400^{\circ}C$ and $600^{\circ}C$ than that at $500^{\circ}C$.

  • PDF

Synthesis and Characterization of Molybdenum and Tungsten Oxo-Nitrosyl Complexes Containing ${Mo(NO)_2}^{2+}$ Unit with Isobutyl- and n-Butylamidoxime (이소부틸과 부틸아미드옥심으로한 ${Mo(NO)_2}^{2+}$ 단위체가 포함하는 몰리브덴과 텅스텐 산소-니트로실 착물의 합성과 성질)

  • Roh, Soo Gyun;Oh, Sang Oh
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.5
    • /
    • pp.393-398
    • /
    • 1995
  • The oxo-nitrosyl complexes (n-Bu4N)2[M4O12Mo(NO)2{RC(NH2)NHO}2{RC(NH)NO}2] (M=Mo, W; R=(CH3)2CH, n-CH3CH2CH2) have been prepared by the reactions of monomeric complex containing {Mo(NO)2}2+ and polyoxometalates with isobutyl- and n-butylamidoxime. The prepared complexes were characterized by elemental analysis, infrared, 1H NMR, 13C NMR and UV-visible spectroscopy. These complexes contain two {M2O5}2+ [M=Mo, W] cores and a central {Mo(NO)2}2+ core. The {Mo(NO)2}2+ unit was the formally cis type and C2v symmetry in geometric structure. The two {M2O5}2+ cores and a central {Mo(NO)2}2+ core were not nearly interacted with electronic localization, which were identified by spectroscopy.

  • PDF

Development of Metallic Bipolar Plate Material with W-addition in Austenitic Stainless Steel for PEMFC Environment

  • Kim, Kwang Min;Koh, Sung Ung;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.153-159
    • /
    • 2006
  • Austenitic stainless steels with addition of various amounts of Mo and W were evaluated in terms of corrosion and contact resistance to determine optimum alloy composition of metallic bipolar plate for PEMFC. The corrosion property was evaluated by both acid fume exposure test at $130^{\circ}C$ and by electrochemical polarization tests in $H_3PO_4$ solution at $80^{\circ}C$. Austenitic stainless steel with proper amount of Mo and W demonstrated not only good corrosion resistance but also low contact resistance. Analyses on the passive film show that partial substitution of Mo by W enhances passive film stability and repassivation property. Test results suggest that austenitic stainless steel with 2 wt%Mo and 4 wt%W has optimum composition for metallic bipolar plate used in PEMFC.

U-Zr 합금의 미세조직과 조직안정성에 미치는 Mo 및 W 원소 첨가의 영향

  • 김준호;설경원;이병수;강영호;이종탁;김기환
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.177-182
    • /
    • 1997
  • 금속연료가 연소할 때 발생하는 Fission Gas는 주로 직경방향으로의 Swelling을 일으켜 낮은 연소도의 원인이 되어 왔다. 따라서 본 연구에서는 높은 연소도를 갖는 금속연료의 개발을 목적으로 Fission Gas가 Plenum으로 쉽게 방출하는 조직인 Laminar Structure를 갖는 합금의 설계를 연구하였다. 또한 조사 후의 조직안정성을 예측하기 위해 열처리 후의 미세조직의 변화를 관찰하여 조직안정성을 시험하였다. U-10wt.%Zr 합금 중 Zr 원소 대신에 2wt.% 및 3wt.%의 W 또는 Mo을 첨가한 합금을 제조하여 합금원소 첨가의 영향에 따른 미세조직의 변화를 조사하였다. 그 결과 모든 조성의 합금은 Matrix에 있어서 Laminar Structure를 나타내었다. 또한 U-10wt.%Zr에 비해 2wt.% 및 3wt.%W의 W 또는 Mo를 첨가한 합금의 lamina Thickness가 철면 미세해짐을 확인하였다. 특히 U-7wt.%Zr-3wt.%W의 경우는 U-10wt.Zr에 비해 Laminar Thickness가 1/2배까지 감소되었다. 합금원소(W, Mo) 첨가에 의한 Laminar Thickness의 감소는 Fission Gas의 Inter-connected Path가 보다 잘 형성되게 하여 Gas의 방출속도를 증가시켜 Swelling을 감소시킬 것으로 생각된다. 열처리한 금속연료의 미세조직을 비교한 결과를 보면 합금원소(W, Mo)를 첨가한 합금을 50$0^{\circ}C$에서 1000시간동안 열처리한 것을 U-Zr 2원계 합금을 열처리한 것과 비교했을 때 약 1/3배 정도의 Laminar Thickness를 유지하는 것으로 보아 합금원소를 첨가하면 조사 후의 조직안정성에도 크게 기여할 것으로 기대된다.

  • PDF