• Title/Summary/Keyword: Vth

Search Result 86, Processing Time 0.027 seconds

The Effects of Hydrogenation in n-channel Poly-si TFT with LDD Structure (LDD구조를 갖는 n-채널 다결정 실리론 TFT소자에서 수소처리의 영향)

  • 장원수;조상운;정연식;이용재
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1105-1108
    • /
    • 2003
  • In this paper, we have fabricated the hydrogenated n-channel polysilicon thin film transistor (TFT) with LDD structure and have analyzed the hot carrier degradation characteristics by electrical stress. We have compared the threshold voltage (Vth), sub-threshold slope (S), and trans-conductance (Gm) for devices with LDD (Lightly Doped Drain) structure and non-LDD at same active sizes. We have analyzed the hot carrier effects by the hydrogenation in devices. As a analyzed results, the threshold voltage, sub-threshold slope for n-channel poly-si TFT were increased, trans-conductance was decreased. The effects of hydrogenation in n-channel poly-si TFT with LDD structure were shown the lower variations of characteristics than devices of the non-LDD structure with nomal process.

  • PDF

A Study on Electrical Characteristics and Optimization of Trench Power MOSFET for Industrial Motor Drive

  • Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.365-370
    • /
    • 2013
  • Power MOSFET is developed in power savings, high efficiency, small size, high reliability, fast switching, and low noise. Power MOSFET can be used in high-speed switching transistors devices. Recently attention given to the motor and the application of various technologies. Power MOSFET is a voltage-driven approach switching device and designed to handle on large power, power supplies, converters, motor controllers. In this paper, the 400 V Planar type, and the trench type for realization of low on-resistance are designed. Trench Gate Power MOSFET Vth : 3.25 V BV : 484 V Ron : 0.0395 Ohm has been optimized.

Analysis and Calibration of Transient Enhanced Diffusion for Indium Impurity in Nanoscale Semiconductor Devices

  • Lee Jun-Ha;Lee Hoong-Joo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.1
    • /
    • pp.18-22
    • /
    • 2005
  • We developed a new systematic calibration procedure and applied it to the calibration of the diffusivity, segregation and TED model of the indium impurity. The TED of the indium impurity was studied under 4 different experimental conditions. Although the indium proved to be susceptible to the TED, the RTA was effective in suppressing the TED effect and in maintaining a steep retrograde profile. Just as in the case of boron, indium demonstrated significant oxidation-enhanced diffusion in silicon and its segregation coefficients at the Si/SiO₂ interface were significantly below 1. In contrast, the segregation coefficient of indium decreased as the temperature increased. The accuracy of the proposed technique has been validated by SIMS data and 0.13-㎛ device characteristics such as Vth and Idsat with errors less than 5% between simulation and experiment.

High-Performance Amorphous Indium-Gallium Zinc Oxide Thin-Film Transistors with Inorganic/Organic Double Layer Gate Dielectric

  • Lee, Tae-Ho;Kim, Jin-U;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.465-465
    • /
    • 2013
  • Inorganic 물질인 SiO2 dielectric 위에 organic dielectric PVP (4-vinyphenol)를 spin coating으로 올려, inorganic/organic dielectric 형태의 double layer구조로 High-performance amorphous indiumgallium zinc oxide thin-film transistors (IGZO TFT)를 제작하여 보았다. SiO2 dielectric을 buffer layer로 80 nm, PVP는 10Wt% 400 nm로 구성하였으며, 200 nm single SiO2 dielectric과 동일한 수준의 leakage current 특성을 MIM Capacitor 구조를 통해서 확인할 수 있었다. 이 소자의 장점은 용액공정의 도입으로 공정 시간의 단축 및 원가 절감을 이룰 수 있으며, dielectric과 channel 사이의 균일한 interface의 형성으로 interface trap 개선 및 Yield 향상의 장점을 갖는다. 우리는 실험을 통해서 SiO2 buffer layer가 수직 electric field에 의한 leakage current을 제어하고, PVP dielectric은 interface를 개선하는 것을 확인하였다. Vth의 negative shift 및 slope의 향상으로 구동전압이 줄어들고, 균일한 I-V Curve 형성을 통해서 Process Yield의 향상을 확인하였다.

  • PDF

Oxide TFT Structure Affecting the Device Performance

  • KoPark, Sang-Hee;Cho, Doo-Hee;Hwang, Chi-Sun;Ryu, Min-Ki;Yang, Shin-Hyuk;Byun, Chun-Won;Yoon, Sung-Min;Cheong, Woo-Seok;Cho, Kyoung-Ik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.385-388
    • /
    • 2009
  • We have investigated the effect of the device structure on the performance of polycrystalline ZnO TFT and amorphous AZTO TFT with top gate and bottom gate structure. While the mobility of both TFTs showed relatively similar value in a top and bottom gate structure, bias stability was quite different depending on the device structure. Top gate TFT showed much less Vth shift under positive bias stress compared to that of bottom gate TFT. We attributed this different behavior to the defects formation on the gate insulator induced by energetic bombardment during the active layer deposition in a bottom gate TFT. We suggest the top gate oxide TFT would show more stable behavior under the Vgs bias.

  • PDF

New Voltage Programming LTPS-TFT Pixel Scaling Down VTH Variation for AMOLED Display

  • Nam, Woo-Jin;Lee, Jae-Hoon;Shin, Hee-Sun;Jeon, Jae-Hong;Han, Min-Koo
    • Journal of Information Display
    • /
    • v.7 no.3
    • /
    • pp.9-12
    • /
    • 2006
  • A new voltage-scaled compensation pixel which employs 3 p-type poly-Si TFTs and 2 capacitors without additional control line has been proposed and verified. The proposed pixel does not employ the $V_{TH}$ memorizing and cancellation, but scales down the inevitable $V_{TH}$ variation of poly-Si TFT. Also the troublesome narrow input range of $V_{DATA}$ is increased and the $V_{DD}$ supply voltage drop is suppressed. In our experimental results, the OLED current error is successfully compensated by easily controlling the proposed voltage scaling effects.

Analysis of Electrical Characteristics According to Fabrication of 500 V Unified Trench Gate Power MOSFET

  • Kang, Ey Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.222-226
    • /
    • 2016
  • This paper investigated the trench process, unified field limit ring, and other products for the development of a 500 V-level unified trench gate power MOSFET. The optimal base chemistry for the device was found to be SF6. In SEM analysis, the step process of the trench gate and field limit ring showed outstanding process results. After finalizing device design, its electrical characteristics were compared and contrasted with those of a planar device. It was shown that, although both devices maintained a breakdown voltage of 500 V, the Vth and on-state voltage drop characteristics were better than those of the planar type.

Screen-printed Source and Drain Electrodes for Inkjet-processed Zinc-tin-oxide Thin-film Transistor

  • Kwack, Young-Jin;Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.271-274
    • /
    • 2011
  • Screen-printed source and drain electrodes were used for a spin-coated and inkjet-processed zinc-tin oxide (ZTO) TFTs for the first time. Source and drain were silver nanoparticles. Channel length was patterned using screen printing technology. Different silver nanoinks and process parameters were tested to find optimal source and drain contacts Relatively good electrical properties of a screen-printed inkjet-processed oxide TFT were obtained as follows; a mobility of 1.20 $cm^2$/Vs, an on-off current ratio of $10^6$, a Vth of 5.4 V and a subthreshold swing of 1.5 V/dec.

Study on Electric Characteristics of IGBT Having P Region Under Trench Gate (Trench Gate 하단 P-영역을 갖는 IGBT의 전기적 특성에 관한 연구)

  • Ann, Byoung Sub;Yuek, Jinkeoung;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.361-365
    • /
    • 2019
  • Although there is no strict definition of a power semiconductor device, a general description is a semiconductor that has capability to control more than 1 W of electricity. Integrated gate bipolar transistors (IGBTs), which are power semiconductors, are widely used in voltage ranges above 300 V and are especially popular in high-efficiency, high-speed power systems. In this paper, the size of the gate was adjusted to test the variation in the yield voltage characteristics by measuring the electric field concentration under the trench gate. After the experiment Synopsys' TCAD was used to analyze the efficiency of threshold voltage, on-state voltage drop, and breakdown voltage by measuring the P- region and its size under the gate.

a-Si:H TFT Using Ferroelectrics as a Gate Insulator (강유전체를 게이트 절연층으로 한 수소화 된 비정질실리콘 박막 트랜지스터)

  • 허창우;윤호군;류광렬
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.537-541
    • /
    • 2003
  • The a-Si:H TFTs using ferroelectric of SrTiO$_3$, as a gate insulator is fabricated on glass. Dielectric characteristics of ferroelectric is better than SiO$_2$, SiN. Ferroelectric increases ON-current, decreases threshold voltage of TFT and also breakdown characteristics. The a-Si:H deposited by PECVD shows absorption band peaks at wavenumber 2,000 $cm^{-1}$ /, 635 $cm^{-1}$ / and 876 $cm^{-1}$ / according to FTIR measurement. Wavenumber 2,000 $cm^{-1}$ /, 635 $cm^{-1}$ / are caused by stretching and rocking mode SiH1. The wavenumber of weaker band, 876 $cm^{-1}$ / is due to SiH$_2$ vibration mode. The a-SiN:H has optical bandgap of 2.61 eV, refractive index of 1.8 - 2.0 and resistivity of 10$^{11}$ - 10$^{15}$ aim respectively. Insulating characteristics of ferroelectric is excellent because dielectric constant of ferroelectric is about 60 - 100 and breakdown strength is over 1 MV/cm. TFT using ferroelectric has channel length of 8 - 20 $\mu$m and channel width of 80 - 200 $\mu$m. And it shows drain current of 3 $\mu$A at 20 gate voltages, Ion/Ioff ratio of 10$^{5}$ - 10$^{6}$ and Vth of 4 - 5 volts.

  • PDF