• 제목/요약/키워드: Voting method

검색결과 187건 처리시간 0.025초

효과적인 3차원 기하학적 구조 추정 및 모델링을 위한 텐서 보팅 기반 영역 분할 (Efficient 3D Geometric Structure Inference and Modeling for Tensor Voting based Region Segmentation)

  • 김상균;박순영;박종현
    • 대한전자공학회논문지SP
    • /
    • 제49권3호
    • /
    • pp.10-17
    • /
    • 2012
  • 이미지 기반 3차원 장면은 비전 시스템, 게임, 가상현실 체험 등의 분야에서 쉽게 찾아볼 수 있다. 본 논문은 단일 영상으로부터 자동으로 3차원 가상 장면을 생성하기 위한 방법을 제안한다. 제안된 방법은 어린이용 도서의 팝업 이미지의 생성과 유사하다. 특히, 단일 외부 영상으로부터 장면의 3차원 기하학적 구조를 평가하기 위한 과분할 영상을 얻기 위해 텐서 보팅을 적용하였다. 텐서 보팅은 이미지의 균질 영역을 더욱더 부드러운 영역에 가깝게 만들며 영역 중심의 토큰은 매우 큰 saliency 값을 갖게 된다. 그리고 각 분할된 영역을 지면, 하늘, 수직성분 등의 대략적인 카테고리로 분류하고 라벨을 부여한다. 이 라벨은 간단한 가정 하에서 이미지를 팝업 모델로 변환시키기 위한 "잘라내기"와 "접기" 로 이용된다. 실험결과 제안된 방법은 복잡한 자연 영상에서도 성공적으로 영역 분할을 수행하였으며 분할된 영역 정보를 기반으로 구조 정보를 추론하여 3차원 팝업 영상으로 모델링하였다.

대표 속성을 이용한 최적 연관 이웃 마이닝 (Optimal Associative Neighborhood Mining using Representative Attribute)

  • 정경용
    • 전자공학회논문지CI
    • /
    • 제43권4호
    • /
    • pp.50-57
    • /
    • 2006
  • 최근 정보 기술의 발전에 따라 다양하고 폭넓은 정보들이 디지털 형태로 빠르게 생산 및 배포되고 있다. 사용자가 이러한 정보과잉 속에서 자신이 원하는 정보를 단시간 내에 검색하는 것은 그리 쉬운 일이 아니다. 따라서 유비쿼터스 상거래에서 사용자가 정보를 효율적으로 이용할 수 있도록 제어하고 필터링하는 일을 도와주는 개인화된 추천 시스템이 등장하였으며, 더 나아가 사용자가 원하는 아이템을 예측하고 추천해주고 있으며 이를 위해 협력적 필터링을 적용하고 있다. 이는 사용자의 성향에 맞는 아이템을 예측하고 추천하기 위하여 비슷한 선호도를 가지는 사용자들간의 유사도 가중치를 계산한다. 본 연구는 정보의 속성에 대한 사용자의 선호도를 고려하지 않은 문제를 개선하기 위하여 연관 이웃 마이닝을 사용하여 대표속성에 대한 연관 사용자의 선호도를 협력적 필터링에 반영하였다. 연관 이웃 마이닝은 선호도에 가장 크게 영향을 미치는 속성을 추출하여 유사한 성향을 가진 연관 사용자를 군집한다. 제안된 방법은 사용자가 아이템에 대해서 평가한 MovieLens 데이터 집합을 대상으로 평가되었으며, 기존의 nearest neighbor model과 K-means 군집보다 그 성능이 우수함을 보인다.

형상 정보와 모션 정보 융합을 통한 움직이는 물체 인식 (Moving Object Classification through Fusion of Shape and Motion Information)

  • 김정호;고한석
    • 전자공학회논문지CI
    • /
    • 제43권5호
    • /
    • pp.38-47
    • /
    • 2006
  • 기존의 인식 방법은 물체에 대한 형상 정보 또는 움직임을 특징으로 한 단일 인식기를 사용한다. 하지만, 기존의 단일 특징 기반의 단일 인식기를 사용하는 방법의 인식 성능은 물체의 영역에 대한 정확한 검출에 크게 의존하는 단점을 가진다. 본 논문에서는 이러한 기존 인식방법의 단점을 해결하고, 인식의 신뢰성을 높이기 위해서 세 가지 인식기에 의한 각 결과를 Bayesian을 이용하여 융합하는 새로운 인식 방법을 제안한다. 첫 번째 인식기는 푸리에 묘사자로부터 얻은 형상 정보를 특징으로 한 신경망을 사용하고, 두 번째 인식기는 형상 정보에 대한 기울기를 바탕으로 한 통계적인 방법을 사용한다. 또한. 세 번째 인식기는 검출된 물체의 일정 부분의 움직임에 대한 모션 정보를 특징으로 하여 인식한다. 본 논문의 실험결과에서 제안한 결과 융합방법은 기존의 Majority Voting과 Weight Average Score 방법에 비해서 더 우수한 인식 성능을 보여준다.

개인화 추천 시스템의 예측 정확도 향상을 위한 사용자 유사도 가중치에 대한 비교 평가 (Comparative Evaluation of User Similarity Weight for Improving Prediction Accuracy in Personalized Recommender System)

  • 정경용;이정현
    • 전자공학회논문지CI
    • /
    • 제42권6호
    • /
    • pp.63-74
    • /
    • 2005
  • 전자상거래에서 최근 대부분의 개인화된 추천 시스템들은 협력적 필터링 기술을 적용하고 있다. 이 방법은 사용자의 성향에 맞는 아이템을 예측하고 추천하기 위하여 비슷한 선호도를 가지는 사용자들간의 유사도 가중치를 계산한다. 이때 일반적으로 피어슨 상관계수를 많이 사용한다. 그러나 이 방법은 두 사용자가 공통으로 선호도를 평가한 아이템들이 있을 때만 상관관계를 계산할 수 있으므로 예측의 정확도는 떨어진다. 사용자 유사도 가중치는 사용자의 성향에 맞는 아이템을 예측하는 경우 뿐만 아니라 개인화된 추천 시스템의 성능에 영향을 미칠 수 있다. 본 논문에서는 정보검색 분야의 벡터 유사도, 엔트로피, 역 사용자 빈도, 기본 선호도 평가를 적용하여 유사도 가중치 공식에 대해서 살펴보고, 추천 시스템의 예측 정확도 향상에 대해서도 실험을 통해 확인해 보았다. 실험 결과는 엔트로피를 이용한 유사도 가중치에 기본 선호도 평가를 결합하는 방법이 가장 성능이 우수함을 알 수 있다.

견고한 검증을 제공하는 이더리움 블록체인 기반의 여론조사 어플리케이션 (A Public Opinion Polling Application with Robust Verification Based on the Ethereum Bolckchain)

  • 진재환;엄현민;선주은;이명준
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제8권3호
    • /
    • pp.895-905
    • /
    • 2018
  • 여론조사는 특정 사안에 대하여 사회 집단의 성향을 알아보기 위한 수단으로서 현대 사회에 강한 영향력을 미치고 있다. 이처럼 여론 조사의 영향력이 커짐에 따라 결과물의 위·변조의 문제점이 중요한 이슈로 나타나게 되었으며 여론조사의 신뢰성을 보장하기 위한 새로운 방안이 필요한 실정이다. 이더리움 블록체인은 이를 위한 해결방안으로서 신뢰성이 보장되는 블록체인 기술을 이용하는 분산 어플리케이션을 개발하기 위한 환경이다. 이더리움 분산 어플리케이션은 스마트 컨트랙트를 활용하여 사용자를 위한 서비스들을 투명하고 신뢰성 있게 제공할 수 있다. 본 논문에서는 위·변조가 사실상 불가능한 분산 장부 관리기법인 블록체인을 이용하여 신뢰성을 보장하는 여론조사 기법에 대하여 제안한다. 제안하는 기법은 여론조사 결과물에 대한 여론조사 대상자 개인 및 검증 기관의 견고한 검증 기능을 제공한다. 또한, 제안하는 기법의 유효성을 확인하기 위하여 프라이빗 이더리움 블록체인 네트워크에서 동작하는 여론조사 분산 어플리케이션을 개발한다.

공공데이터에 적합한 다양한 소셜 그래프 비주얼라이제이션 알고리즘 제안 (Social graph visualization techniques for public data)

  • 이만재;온병원
    • 한국HCI학회논문지
    • /
    • 제10권1호
    • /
    • pp.5-17
    • /
    • 2015
  • 최근 다양한 공공데이터가 개방되고 있으며, 적절한 데이터 마이닝과 시각화 알고리즘을 통해 일반 시민에게 서비스 되고 있다. 이를 통해 정부와 지방자치단체는 공공 정책의 투명성과 효율성을 널리 알릴 수 있을 뿐 아니라, 일반 사용자들이 개방된 공공데이터를 재가공하여 서비스함으로써 관련 산업의 성장을 이끌고 있다. 공공데이터의 최종 사용자는 일반 시민이기 때문에, 누구나 손쉽게 이해할 수 있도록 공공데이터를 적절히 시각화하는 것이 무엇보다 중요하다. 본 연구에서는 공공데이터 비주얼라이제이션의 중요성을 널리 알리기 위해, 일반 국민이 관심을 가질만한 공공데이터로 UN 회원국의 투표 데이터를 고려한다. 외교와 교육 목적으로 그 활용 가치가 높고 데이터를 쉽게 얻을 수 있는 장점이 있다. 또한 적절한 데이터 마이닝과 시각화 과정을 거친다면, 일반 사용자들이 유엔 회원국 간의 투표 성향에 대한 통찰력을 쉽게 얻을 수 있다. 유엔 투표 데이터를 시각화하기 위해서는, 회원국 간의 투표성향 유사도를 측정하고, 이를 바탕으로 소셜 그래프를 구현한다. 그리고 그래프 레이아웃 알고리즘을 적용하여 그래프를 화면에 렌더링 하게 된다. 기존 방법을 이용하여 소셜 그래프를 비주얼라이제이션 할 경우에 그래프의 복잡도가 증가하여 유엔 회원국 간의 투표성향을 파악하는데 큰 어려움이 있다. 이러한 문제를 개선하기 위해, 본 논문에서는 친구 매칭(Friend-Matching), 친구-라이벌 매칭(Friend-Rival Matching), 버블힙(Bubble Heap) 알고리즘들을 차례로 제안한 다. 제안된 알고리즘을 바탕으로, 기존 그래프 비주얼라이제이션을 개선하여 일반 사용자들이 손쉽게 유엔 회원국 간의 투표성향과 관련된 특정 패턴이나 통찰력을 얻는데 큰 도움을 줄 것이다. 또한 웹에서 동작하는 프로토타입을 구현하여, 누구나 방문하여 테스트를 할 수 있다. 웹 페이지 주소: http://datalab.kunsan.ac.kr/politiz/un/

델파이법을 이용한 일차의료 개념정의: 이차출판 (Defining the Concept of Primary Care in South Korea Using a Delphi Method: Secondary Publication)

  • 이재호;최용준;;김수영;김용식;박훈기;전태희;홍승권
    • 보건행정학회지
    • /
    • 제24권1호
    • /
    • pp.100-106
    • /
    • 2014
  • Background: There is no consensus on the definition of primary care in South Korea. This study's objective was to define the concept of primary care using a Delphi method. Methods: Three expert panels were formed, consisting of 16 primary care policy researchers, 45 stakeholders, and 16 primary care physicians. Three rounds of voting, using 9-point appropriateness scales, were conducted. The first round involved rating the appropriateness of 20 previously established attributes of primary care. In the second round, panelists received a summary of the first-round results and were asked to once again vote on the 10 undetermined attributes and the provisional definition. The final round involved voting on the appropriateness of the revised definition. The Korean Language Society reviewed the revised definition. Results: Four core (first-contact care, comprehensiveness, coordination, and longitudinality) and three ancillary (personalized care, family and community context, and community base) attributes were selected. The Korean definition of primary care was accomplished with all three panel groups arriving at a 'very good' level of consensus. Conclusion: The Korean definition of primary care will provide a framework for evaluating performance of primary care in South Korea. It will also contribute to resolving confusion about the concept of primary care.

범주형 자료의 결측치 추정방법 성능 비교 (Comparing Accuracy of Imputation Methods for Categorical Incomplete Data)

  • 신형원;손소영
    • 응용통계연구
    • /
    • 제15권1호
    • /
    • pp.33-43
    • /
    • 2002
  • 범주형 데이터의 결측치 추정을 위하여 최빈 범주법, 로지스틱 회귀분석, 연관규칙과 같은 다양한 방법이 연구되어 왔다. 본 연구에서는 이러한 방법의 추정 값을 결합하는 신경망 융합과 투표융합 방법을 제안하고 이의 성능을 시뮬레이션을 이용하여 비교하였다. 실험에 사용된 데이터의 특성을 나타내는 인자로는 (1) 입출력 변수간의 연결함수, (2) 데이터의 크기, (3) 노이즈의 크기 (4) 결측치의 비율, (5) 결측발생 함수를 사용하였다. 분석결과는 다음과 같다. 데이터의 크기가 작고 결측 발생 비율이 높으면 최빈 범주법, 연관규칙, 신경망 융합의 성능이 높게 나타났으며 데이터의 크기가 작고 결측발생 확률이 결측이 안된 나머지 변수에 높은 의존관계가 있으면 로지스틱 회귀분석, 신경망 융합의 성능이 높게 나타났다. 데이터의 크기가 크고, 결측치의 비율이 낮으면서, 노이즈가 크고 결측발생 확률이 결측이 안된 나머지 변수에 높은 의존관계가 있으면 신경망 융합의 성능이 높게 나타났다.

생체 의학 정보 수집이 가능한 실리콘 비드용 가변적인 속도 클록 데이터 복원 회로 설계 (A Design of Variable Rate Clock and Data Recovery Circuit for Biomedical Silicon Bead)

  • 조성훈;이동수;박형구;이강윤
    • 한국산업정보학회논문지
    • /
    • 제20권4호
    • /
    • pp.39-45
    • /
    • 2015
  • 이 논문은 블라인드 오버샘플링(Blind Oversampling) 기법을 이용한 가변적인 속도 클록 데이터 복원 회로 설계에 관한 내용을 제시하고 있다. 클록 데이터 복원 회로는 기본적으로 클록 복원과 데이터 복원 회로로 구성되어 있다. 클록 복원 회로는 넓은 범위를 가지는 전압 제어 발진기(Wide Range VCO)와 밴드 선택(Band Selection) 기법을 복합적으로 사용하여 구현하였고 데이터 복원 회로는 머저리티 보팅(Majority Voting) 방식을 이용하는 디지털 회로로 제안하여 저전력 및 작은 면적으로 구성하였다. 넓은 범위를 가지는 전압 제어 발진기와 데이터 복원회로를 디지털로 구현함으로써 저전력으로 가변적인 속도 클록 데이터 복원회로 구현이 가능하였다. 설계된 회로는 약 10bps에서 2Mbps 범위에서 동작한다. 전체 전력 소비는 1MHz 클록에서 약 4.4mW의 전력을 소비한다. 공급전압은 1.2V 이며 제작된 코어의 면적은 $120{\mu}m{\times}75{\mu}m$ 이고 $0.13{\mu}m$ CMOS 공정에서 제작되었다.

머신러닝 기반 안드로이드 모바일 악성 앱의 최적 특징점 선정 및 모델링 방안 제안 (Modeling and Selecting Optimal Features for Machine Learning Based Detections of Android Malwares)

  • 이계웅;오승택;윤영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권11호
    • /
    • pp.427-432
    • /
    • 2019
  • 모바일 운영체제 중 안드로이드의 점유율이 높아지면서 모바일 악성코드 위협은 대부분 안드로이드에서 발생하고 있다. 그러나 정상앱이나 악성앱이 진화하면서 권한 등의 단일 특징점으로 악성여부를 연구하는 방법은 유효성 문제가 발생하여 다양한 특징점 추출 및 기계학습을 통해 이를 극복하고자 한다. 본 논문에서는 APK 파일에서 구동에 필요한 다섯 종류의 특징점들을 안드로가드라는 정적분석 툴을 사용하여 학습데이터의 특성을 추출한다. 또한 추출된 중요 특징점을 기반으로 모델링을 하는 세 가지 방법을 제시한다. 첫 번째 방법은 보안 전문가에 의해 엄선된 132가지의 특징점 조합을 바탕으로 모델링하는 것이다. 두 번째는 학습 데이터 7,000개의 앱에서 발생 빈도수가 높은 상위 99%인 8,004가지의 특징점들 중 랜덤포레스트 분류기를 이용하여 특성중요도가 가장 높은 300가지를 선정 후 모델링 하는 방법이다. 마지막 방법은 300가지의 특징점을 학습한 다수의 모델을 통합하여 하나의 가중치 투표 모델을 구성하는 방법이다. 추가적으로 오탐률 및 미탐률을 개선하기 위해 권한 정보를 모두 제외하여 특징점을 재구성하고 위와 같은 환경으로 모델링하였다. 최종적으로 가중치 투표 모델인 앙상블 알고리즘 모델을 사용하여 97.8%로 정확도가 개선되었고 오탐률은 1.9%로 성능이 개선된 것이 확인되었다.