• 제목/요약/키워드: Vortex liquid

검색결과 102건 처리시간 0.025초

딤플이 설치된 회전 유로에서의 열전달 계수 분포 측정 연구 (Measurement of the Detailed Heat Transfer Coefficient in the Rotating Dimpled Rectangular Channel)

  • 박승덕;이기선;전창수;곽재수;전용민
    • 한국유체기계학회 논문집
    • /
    • 제12권1호
    • /
    • pp.51-56
    • /
    • 2009
  • The detailed heat transfer coefficient on a rotating dimpled channel were measured using the transient liquid crystal technique. The channel height to dimple diameter was 2, dimple center distance to dimple diameter was 1.5 and channel aspect ratio was 4. Tested Reynolds number based on the channel hydraulic diameter was varied from 15000 to 35000 and corresponding rotation number was ranged from 0.026 to 0.057. Results showed that the Coriolis force by rotation enhanced the heat transfer coefficient on the trailing surface. As the Reynolds number increased, i.e. rotation number decreased, the heat transfer coefficient increased and the thermal performance factor decreased.

PIV측정을 통한 램제트 연소기의 최적 형상 (Optimal Configuration of a Liquid Ramjet Combustor using PIV Method)

  • 손창현;김규남;문수연;이충원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2002년도 제18회 학술발표대회 논문초록집
    • /
    • pp.46-49
    • /
    • 2002
  • Three-dimensional flow characteristics in a liquid fuel ramjet combustor were investigated using the PIV method. The combustor has two rectangular inlets that loin a 90-degree angle each other. Three cases of test combustors are made in which those inlet angles are 30 degree, 45degree and 60 degree. The experiments were performed in a water tunnel test with the same Reynolds number as Mach 0.3 at the inlet. PIV software was developed to measure the characteristics of the flow field in the combustor. Accuracy of the developed PIV program was verified with a rotating disk experiment and standard data. The characteristics of the internal flows of the combustor are large swirling flows which appear symmetric with respect to the symmetric section. This is attributed to the fact that the flows introduced from the right and left intakes collide with each other, thus forming symmetrically large vortices. A large and complex three-dimensional recirculating flow was measured behind the intakes. An inlet angle of 30 degrees is the most suitable angle as a frame he]der in the performed experimental ranges.

  • PDF

유한요소법을 이용한 진동물체의 최적 제어에 관한 연구 (Optimal Control of An Oscillating Body Using Finite Element Methods)

  • 박승진
    • 도시과학
    • /
    • 제7권1호
    • /
    • pp.55-61
    • /
    • 2018
  • Long bridges, such as suspension bridges and diagonal bridges, are complex phenomena that show different behaviors depending on the shape and rigidity of the cross sections, such as wind vibrations and liquid vibrations from earthquakes in liquid storage containers. This is called the lower skirt on the lower side of the bridge, and the installation of lower skirt is effective for release and vortex vibrations caused by rapid winds, and that increases the stability of the wind resistance of the bridge. Optimal shape and installation of the lower skirt is also essential to make maximum wind speed effect of the lower skirt. Therefore, this study proposes a numerical analysis method to control the vibration of a bridge by calculating the optimal installation angle of an optimal lower skirt according to the optimal control theory and this study evaluates the impact on the optimal control system by minimizing the dominance equation with an evaluation function,which is an indicator for evaluating the optimal control theory state.

딤플이 설치된 회전 유로의 높이가 열전달 계수에 미치는 영향에 대한 실험적 연구 (Effect of channel height on the heat transfer coefficient of a rotation dimpled channel)

  • 김석범;이용진;최은영;전창수;곽재수
    • 한국유체기계학회 논문집
    • /
    • 제13권3호
    • /
    • pp.30-36
    • /
    • 2010
  • The detailed heat transfer coefficients on a rotating dimpled channel were measured by the hue detection based the transient liquid crystal technique. The dimples were fabricated on the one side of the channel and the tested channel aspect ratio was 4, 6, and 12 with fixed channel width. Tested Reynolds number based on the channel hydraulic diameter was varied from 21,000 to 47,000. A stationary case and two different rotating conditions were tested so that the dimple fabricated surface became leading or trailing surface. For all rotating conditions, the minimum averaged heat transfer coefficient was measured for the channel aspect ratio of 6. Generally, the highest averaged heat transfer coefficient was observed for the highest aspect ratio cases due to increased dimple induced vortex strength.

A Study on the Characteristics of Two-Phase Flow by Driven Bubbles in a Liquid Bath

  • Oh, Yool-Kwon;Seo, Dong-Pyo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권1호
    • /
    • pp.44-50
    • /
    • 2005
  • In the present study, the characteristics of upward bubble flow were experimentally investigated in a liquid bath. An electro-conductivity probe was used to measure local volume fraction and bubble frequency. Since the gas was concentrated at the near the nozzle, the flow parameters were high near the nozzle. In general their axial and radial values tended to decrease with increasing distance. For visualization of flow characteristics, a Particle Image Velocimetry (PIV) and a thermo-vision camera were used in the present study. The experimental results showed that heat transfer from bubble surface to water was largely completed within z = 10 mm from the nozzle, and then the temperature of bubble surface reached that of water rapidly. Due to the centrifugal force, the flow was more developed near the wall than at bubble-water plume. Vortex flow in the bottom region was relatively weaker than that in the upper region.

A Study on the Mixture Formation Process of Evaporating Diesel Spray by Offset Incidence Laser Beam

  • Yeom, Jeong-Kuk;Kang, Byung-Mu;Lee, Myung-Jun;Chung, Sung-Sik;Ha, Jong-Yul;Hajime Fujimoto
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1702-1709
    • /
    • 2002
  • This paper analyzes heterogeneous distribution of branch-like structure at the downstream region of the spray. The liquid and vapor phase of the spray are obtained using a 35㎜ still camera and CCD camera in order to investigate spray structure of evaporating diesel spray. There have been many studies conducted on diesel spray structure but have yet only focused on the analyses of 2-D structure. There are a few information which is concerned with 3-D structure analysis of evaporating spray. The heterogeneous distribution of droplets in inner spray affects the mixture formation of diesel spray and the combustion characteristics of the diesel engines. In this study, the laser beam of 2-D plane was used in order to investigate 3-D structure of evaporating spray The incident laser beam was offset on the central axis of the spray. From the analysis of images taken by offset laser beam, we will examine the formation mechanism of heterogeneous distribution of the diesel spray by vortex flow at the downstream of the spray. The images of liquid and vapor phase of free spray are simultaneously taken through an exciplex fluorescence method. Through this, the branch-like structure consisting of heterogeneous distribution of the droplets forms high concentrated vapor phase at the periphery of droplets and at the spray tip.

주증기계통 오리피스 후단 소구경 배관의 감육 및 누설 발생 (Cause Analysis for the Wall Thinning and Leakage of a Small Bore Piping Downstream of an Orifice)

  • 황경모
    • Corrosion Science and Technology
    • /
    • 제12권5호
    • /
    • pp.227-232
    • /
    • 2013
  • A number of components installed in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), Cavitation, Flashing, and LDIE (Liquid Droplet Impingement Erosion). Those aging mechanisms can lead to thinning of the components. In April 2013, one (1) inch small bore piping branched from the main steam line experienced leakage resulting from wall thinning in a 1,000 MWe Korean PWR nuclear power plant. During the normal operation, extracted steam from the main steam line goes to condenser through the small bore piping. The leak occurred in the downstream of an orifice. A control valve with vertical flow path was placed on in front of the orifice. This paper deals with UT (Ultrasonic Test) thickness data, SEM images, and numerical simulation results in order to analyze the extent of damage and the cause of leakage in the small bore piping. As a result, it is concluded that the main cause of the small bore pipe wall thinning is liquid droplet impingement erosion. Moreover, it is observed that the leak occurred at the reattachment point of the vortex flow in the downstream side of the orifice.

고압 스월분무 내부의 압력분포 및 유동특성에 대한 연구 (The Static Pressure Distribution and Flow Characteristics Inside the High-Pressure Swirl Spray)

  • 문석수;;최재준;배충식
    • 한국분무공학회지
    • /
    • 제11권3호
    • /
    • pp.168-175
    • /
    • 2006
  • The static pressure distribution and flow characteristics inside the high-pressure swirl spray were investigated by measuring the static pressure inside the spray and applying the computational fluid dynamics (CFD). The static pressure difference between inner and outer part of spray was measured at different axial locations and operating conditions using a piezo-resislive pressure transducer. To obtain the qualitative value of swirl motion at different operating conditions, the spray impact-pressure at the nozzle exit was measured using a piezo-electric pressure transducer, and the flow angle was measured using a microscopic imaging system. The flow characteristics inside the high pressure swirl spray was simulated by the 1-phase 3-dimensional CFD model. The effect of pressure alternations on spray development was discussed with macroscopic spray images and a mathematical liquid film model. The results showed that the static pressure drop is observed inside the swirl spray as a result of the dragged air motion and the centrifugal force of the air. The recirculation vortex inside the spray was also observed inside the swirl spray as a result of the adverse pressure gradient along the axial locations. The results of analytical liquid film model and macroscopic spray images showed that the static pressure structure is one of the main parameters affecting the swirl spray development.

  • PDF

자기장이 인가된 충돌제트의 열전달 특성에 관한 수치적 연구 (A Numerical Study on the Heat Transfer Characteristics of Impinging Jet Flow in the Presence of Applied Magnetic Fields)

  • 이현구;윤현식;홍승도;하만영
    • 대한기계학회논문집B
    • /
    • 제29권6호
    • /
    • pp.653-661
    • /
    • 2005
  • The present study numerically investigates two-dimensional fluid flow and heat transfer ir the confined jet flow in the presence of applied magnetic field. For the purpose of controlling vortex shedding and heat transfer, numerical simulations to calculate the fluid flow and heat transfer in the confined jet are performed for different Reynolds numbers in the absence and presence of magnetic fields and for different Prandtl numbers of 0.02 (liquid metal), 0.7 (air) and 7 (water) in the range of $0{\le}N{\le}0.05$, where N is the Stuart number (interaction parameter) which is the ratio of electromagnetic force to inertia force. The present study reports the detailed information of flow and thermal quantities in the channel at different Stuart numbers. As the intensity of applied magnetic fields increases, the vortex shedding formed in the channel becomes weaker and the oscillating amplitude of impinging jet decreases. The flow and thermal fields become the steady state if the Stuart number is greater than the critical value. Thus the Nusselt number at the stagnation point representing the heat transfer characteristics also vary as a function of Stuart number.

증발디젤분무의 공간적 구조해석에 관한 기초 연구 (Basic Study on the Spatial Structure Analysis of the Evaporative Diesel Spray)

  • 염정국
    • 동력기계공학회지
    • /
    • 제14권3호
    • /
    • pp.5-12
    • /
    • 2010
  • The purpose of this study is to analyze heterogeneous distribution of branch-like structure at downstream region of inner spray. The previous many studies about diesel spray structure have yet stayed in the analysis of 2-D structure, and there are very few of informations which are concerned with 3-D analysis of the structure. The heterogeneous distribution of droplets in inner spray affects the mixture formation of diesel spray, and also the combustion characteristics of the diesel engines. Therefore, in order to investigate 3-D structure of evaporative spray the laser beam of 2-D plane was used in this study. Liquid fuel was injected from a single-hole nozzle (l/d=5) into a constant-volume vessel under high pressure and temperature in order to visualize the spray phenomena. The incident laser beam was offset on the central axis. From the images analysis taken by offset of laser beam, we examine formation mechanism of heterogeneous distribution by vortex flow at the downstream of the diesel spray. As the experimental results, the branch-like structure formed heterogeneous distribution of the droplets consists of high concentration of vapor phase in the periphery of droplets and spray tip of branch-like structure. Also the 3-D spatial structure of the evaporative diesel spray can be verified by images obtained from 2-D measurement methods.