• Title/Summary/Keyword: Volumetric heat capacity

Search Result 23, Processing Time 0.022 seconds

Low Temperature Adsorption of Hydrogen on Nanoporous Materials

  • Jhung, Sung-Hwa;Yoon, Ji-Woong;Kim, Hye-Kyung;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1075-1078
    • /
    • 2005
  • Hydrogen adsorption on various porous materials have been studied with a volumetric method at low temperature in the pressure of 0-760 torr. Their hydrogen uptakes depend at least partly on microporosity rather than total porosity. However, it is also necessary to consider other parameters such as pore size and pore architecture to explain the adsorption capacity. The heat of adsorption and adsorption-desorption-readsorption experiments show that the hydrogen adsorption over the porous materials are composed of physisorption with negligible contribution of chemisorption. Among the porous materials studied in this work, SAPO-34 has the highest adsorption capacity of 160 mL/g at 77 K and 1 atm probably due to high micropore surface area, micropore volume and narrow pore diameter.

Measurement of thermal properties by TPS-technique and thermal network analysis (TPS를 통한 열물성치 획득 및 네트워크모델을 이용한 열해석)

  • Yun, Tae-Sup;Kim, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.263-268
    • /
    • 2010
  • Thermal characterization of geomaterials has significant implication on the geothermal energy, disposal of nuclear wastes, geological sequestration of carbon dioxides and recovery of hydrocarbon resources. Heat transfer in multiphase materials is dominated by the thermal conductivity of consisting components, porosity, degree of saturation and overburden pressure, which have been investigated by the empirical correlation at macro-scale. The thermal measurement by Transient Plane Source (TPS) and associated algorithm for interpretation of thermal behavior in geomaterials corroborate the robustness of sensing techniques. The method simultaneously provides thermal conductivity, diffusivity and volumetric heat capacity. The newly introduced thermal network model enables estimating thermal conductivity of geomaterials subjected to the effective stress, which has not been evaluated using previous thermal models. The proposed methods shows the applicability of reliability of TPS technique and thermal network model.

  • PDF

Effect of displacement volume ratio on compressor performance for a twin rotary compressor (트윈 로타리 압축기의 행정 체적비가 압축기 성능에 미치는 영향)

  • Ahn, Jong-Min;Kim, Hyun-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.171-176
    • /
    • 2008
  • As one way of design optimization of two-stage two-cylinder rotary compressor used for R410A heat pump application, displacement volume ratio, being defined by the ratio of the second stage cylinder volume to that of the first stage, has been varied and its effect on the compressor performance has been investigated by a computer simulation program. For simplicity, only the cylinder height of the second stage was varied to change the volume ratio. With increasing the volume ratio in the range of VR=$0.55{\sim}0.9$, volumetric efficiency increased monotonically, but adiabatic efficiency showed a maximum at around VR=0.6. Mechanical efficiency was little influenced by the volumetric ratio. As a consequence, maximum improvement of the compressor performance was found at around VR=0.7. Compared to a one-stage two-cylinder rotary compressor with about the same cooling capacity, COP improvement was about 6.96%.

  • PDF

Study on Analytical and Empirical Methods for Assessing Geo-Heat Transfer Characteristics (지중열전달특성 평가에 관한 해석 및 실험적 방법에 관한 연구 - 지중 열물성치 및 보어 홀 열 저항 평가 -)

  • Park Jun-n;Baek Nam-Choon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.427-432
    • /
    • 2005
  • This study treats the advantage of in situ line source method measuring the heat transfer capacity of a borehole, using mobile equipment, to determine the thermal properties of the entire borehole system such as thermal conductivity, diffusiveity. volumetric heat capacity, and borehole thermal resistance. The results from the response test include not only the thermal properties of the ground and the borehole, but also conditions that are difficult to estimate, e,g. natural convection in the boreholes, asymmetry in the construction, etc. In this study, 1) theoretical in situ methods for assessing working fluid temperature variation in V-type PE tube have been introduced, and 2) TRTE(Thermal Response Test Equipment) has been built based on these kinds of theoretical in situ methods. Basically TRTE consists of a pump, a heater and temperature sensors for measuring the inlet and outlet temperatures of the borehole. In order to make equipment easily transportable it is set up on a small trailer. Since the response test takes above two days to execute, the test was fully automatic in recording measured data using Labview DAS(Data acquisition system) program. The test was demonstrated in the course of intensive research in this field through the one site at Ulsan city in Korea. From this kind of thermal properties test of borehole systems in situ, the design of the borehole system can be optimized regarding the total geological, hydro-geological and technical conditions at the location.

  • PDF

Performance Analysis of a $CO_2$ Two-Stage Twin Rotary Compressor ($CO_2$ 2단 트윈 로타리 압축기 성능해석)

  • Kim, Woo-Young;Ahn, Jong-Min;Kim, Hyun-Jin;Cho, Sung-Oug
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.19-27
    • /
    • 2007
  • Analytical investigation on the performance of a two stage twin rotary compressor for $CO_2$ heat pump water heater system has been carried out. A computer simulation program was made based on analytical models for gas compression in control volumes, leakages among neighboring volumes, and dynamics of moving elements of the compressor. Calculated cooling capacity, compressor input, and COP were well compared to those of experiments over the compressor speeds tested. For the operating condition of suction pressure of 3 MPa, and discharge pressure of 9 MPa, and compressor inlet temperature of $35^{\circ}C$, the compressor efficiency was calculated to be 80.2%: volumetric, adiabatic, and mechanical efficiencies were 88.3%, 93.2%, and 92.7%, respectively. For the present compressor model, volumetric and adiabatic efficiencies of the second stage cylinder were lower by about $6{\sim}7%$ than those of the first stage mainly due to the smaller discharge port at the second stage. Parametric study on the discharge port size showed that the compressor performance could be improved by 3.5% just by increasing the discharge port diameter by 20%.

Numerical Analysis of the Chill Effect in L-shaped Sand Castings (L-형 사형주조에서 Chill 효과에 관한 수치적 해석)

  • Kim, Sam-Dong;Kang, Choon-Sik
    • Journal of Korea Foundry Society
    • /
    • v.5 no.2
    • /
    • pp.109-117
    • /
    • 1985
  • A two dimensional analysis of the solidification phenomena has been simulated by IAD (Implicit Alternating Direction)method for L-shaped castings with external chills. The effect of chills has been studied with the variation of chill size, shape, and their materials, and also with the variation of the pouring temperature. Three kinds of cross-sectional shapes of chills such as triangle, square, and L-shape were chosen, and graphite, cast iron, and copper for their materials. It has been shown by the computation that the hot spot at the junction of L-shaped castings can not be removed by external chills, and that the distance between the inner corner and the hot spot on the line of symmetry, as well as the solidification time of castings depend only on VHC (Volumetric Heat Capacity).

  • PDF

The development of a fuel lifecycle reactivity control strategy for a generic micro high temperature reactor

  • Seddon Atkinson;Takeshi Aoki
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.785-792
    • /
    • 2024
  • This article provides an overview of the design methodology used to develop a conceptual set of reactivity control mechanism of a micro reactor based on the U-Battery. The U-Battery is based on remote deployment and therefore it is favourable to provide a long fuel lifecycle. This is achieved by implementing a high fissile loading content, which proves challenging when considering reactivity control methods. This article follows the design methodology used to overcome these issues, with an emphasis on a new concept of a moveable moderator which utilises the size of the U-Battery as a small reduction in moderation provides a significant reduction in reactivity. The latest work on this project sees the moveable moderator investigated during a depressurised loss of forced coolant accident, where a reduction of moderator volume increases the maximum fuel temperature experienced. The overall conclusion is that the maximum fuel temperature is not significantly increased (4 K) due to the central reflector region relatively lower volumetric heat capacity compared to that of whole core. However, a small temperature increase is observed immediately after the transient due to the central reflector removal because it reaches energy equilibrium with the fuel region faster.

Inverse Estimation of Thermal Properties for APC-2 Composite (역열전도 기법을 이요한 복잡재료의 열물성치의 산정)

  • Jeong, Beop-Seong;Kim, Seon-Gyeong;Kim, Hui-Jun;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.673-679
    • /
    • 2001
  • The objective of this work is to estimate the temperature dependent thermal properties of the APC-2 composite using a inverse parameter estimation technique. The present inverse method features the estimation of the thermal conductivity and the volumetric heat capacity, which are dependent on the temperature inside the composite. Furthermore, the thermal conductivity is directionally dependent because of the aniosotropy of the composite. An on-line temperature measurement system with a suitable method of heating is built. A composite slab is fabricated using thermoplastic prepreg for the investigation. The corresponding computer code for evaluating the thermal properties inversely using the temperature reading transmitted from the measurement system is developed. The parameterized form is used for the rapid and stable estimation. The modified Newtons method is adopted for the solution technique of the inverse analysis. The estimated results are compared with the measured data from a previous study for the verification.

Evaluation of Thermal Properties for the Far Infrared Therapy After Microvascular Anastomosis for the Treatment of Circulatory Diseases (미세혈관 문합 후 순환계 질환 개선을 위한 원적외선 치료기의 열적 특성 평가)

  • Yang, Young-Kyu;Oh, Seung-Hyun;Kim, Cheol-Woong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.179-186
    • /
    • 2013
  • Far-infrared radiation therapies are becoming more popular for blood circulation disorders, cardiovascular disease, skin diseases, inhibit cancer cell, etc replacing conventional operations. In this research, thermal characteristics of heating part in panel radiators, which is effective on the blood circulation disorders were experimentally analyzed. The heating line supplies heat energy to insulation coatings with heat flux of $150mW/m^2$ in normal status and as a result the coatings reached 20% of the heating line temperature. In other words, the insulation itself could increase surface temperature of heating plates by 20% and raise thermal time constant promote blood circulation effect. We also found that space arrangement of the heating lines was an important factor in designing heating parts and both coefficient of heat conduction and density of the heating plate should be also considered for superimpose of thermal diffusion.

Thermodynamic Properties of Alternatives for R12, R22 and Performances of Refrigerator (R12 및 R22대체냉매의 열역학적 물성치 및 냉동기의 성능비교)

  • Chang, S.D.;Shin, J.Y.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.73-83
    • /
    • 1993
  • Thermodynamic properties of alternatives for R12 and R22 were estimated and performances of refrigerating cycle using these refrigerants were compared. In this study, we adopt R134a, R22/R142b, R22/R152a, R22/R152a/R124 as alternatives for R12 and R32/R134a for R22. Thermodynamic properties of these refrigerants were estimated using modified CSD equation of state. Cycle simulations of the refrigerating system considering heat source were carried out in order to compare the performance of the system. R134a shows relatively lower COP than R12 but very similar VCR. R22/R142b(50/50 mass fraction), R22/R152a(10/90), R22/R152a/R124(30/25/45) are good for the substitutes of R12 and R32/R134a(30/70) is appropriate for that of R22 in view of COP and VCR.

  • PDF