• Title/Summary/Keyword: Volumetric Ratio

Search Result 386, Processing Time 0.025 seconds

Program Development for Drawing of 26 Properties and System Analysis on T-s Diagram of Water or Vapor (물의 T-s 선도 상에서 26 종류의 물성치 작도 및 시스템 해석 프로그램 개발)

  • Kim, Deok-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.157-164
    • /
    • 2008
  • The temperature-entropy diagram of water or vapor displays graphically the thermophysical properties, so it is very conveniently used in various thermal systems. On general T-s chart of water, there are temperature, pressure, quality, specific volume, specific enthalpy, specific entropy. However, various state and process values besides above properties can be plotted on T-s diagram. In this study, we developed the software drawing twenty six kinds of properties, that is temperature, pressure, quality, specific volume, specific internal energy, specific enthalpy, specific entropy, specific exergy, exergy ratio, density, isobaric specific heat, isochoric specific heat, ratio of specific heat, coefficient of viscosity, kinematic coefficient of viscosity, thermal conductivity, prandtl number, ion product, static dielectric constant, isentropic exponent, velocity of sound, joule-thomson coefficient, pressure coefficient, volumetric coefficient of expansion, isentropic compressibility, and isothermal compressibility. Also, this software can analyze and print the system values of mass flow rate, volume flow rate, internal energy flow rate, enthalpy flow rate, entropy flow rate, exergy flow rate, heat flow rate, power output, power efficiency, and reversible work. Additionally, this software support the functions such as MS-Power Point.

  • PDF

Steam reforming of methane in a solar receiver reactor (SiC foam에 코팅된 상용 촉매에서의 집광된 태양열을 이용한 메탄 수증기개질 반응 연구)

  • Kim, Ki-Man;Han, Gui-Young;Seo, Tae-Beom;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • Steam reforming of methane using Xe-arc solar simulator was studied for the application of concentrated solar energy into chemical reaction. The reactor, a volumetric absorber, consisted of a porous ceramic foam disk coated with commercial reforming catalyst. Operating temperature was in the range of $450\;-\;550^{\circ}C$ and the excess steam ratio to methane was from 3.0 to 5.0. At the steady-state condition, the conversion of methane Increased with temperature in the range of 15 % - 30 % and the experimentally determined conversion was found to be close to theoretical equilibrium conversion. It was also found that the CO selectivity slightly decreased with excess steam ratio. Finally, the conversion of methane decreased significantly with space velocity of reactants.

Similitude Law An Equivalent Three Phase Similitude Law for Pseudodynamic Test on Small-scale Reinforced Concrete Structures (철근콘크리트 구조물의 유사동적실험을 위한 Equivalent Three Phase Similitude LaW)

  • ;;;Guo, Xun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.303-310
    • /
    • 2003
  • Small-scale models have been frequently used for experimental evaluation of seismic performance because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to size of aggregate. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor and equivalent modulus ratio. In this study, compressive strength tests are conducted to analyze equivalent modulus ratio of micro-concrete to normal-concrete. Equivalent modulus ratios are divided into elastic, weak nonlinear and strong nonlinear phases, which are based on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test, considering equivalent three phase similitude law based on seismic damage levels, is developed. In addition, prior to tile experiment, it is verified numerically if tile algorithm is applicable to the pseudodynamic test.

  • PDF

A Study on Similitude Law for Pseudodynamic Tests and Shaking Table Tests on Small-scale R/C Models (철근콘크리트 축소모형의 유사동적실험과 진동대 실험을 위한 상사법칙 연구)

  • Yang, Hui-Gwan;Seo, Ju-Won;Cho, Nam-So;Chang, Sung-Pil
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.545-552
    • /
    • 2006
  • Small-scale models have been frequently used for seismic performance tests because of limited testing facilities and economic reasons. However, there are not also enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry similitude is not well consistent in their inelastic seismic behaviors. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to aggregate size. Therefore, it is desirable to use different materials for small-scale model. In our recent study, a modified similitude law was derived depending on geometric scale factor, equivalent modulus ratio and ultimate strain ratio. And quasi-static and pseudo-dynamic tests on the specimens are carried out using constant and variable modulus ratios, and correlation between prototype and small-scale model is investigated based on their test results. In this study, tests on scaled model of different concrete compressive strength aye carried out. In shaking table tests, added mass can not be varied. Thus, constant added mass on expected maximum displacement was applied and the validity was verified in shaking table tests. And shaking table tests on non-artificial mass model is carried out to settle a limitation of acceleration and the validity was verified in shanking table tests.

  • PDF

Numerical analysis of offshore monopile during repetitive lateral loading

  • Chong, Song-Hun;Shin, Ho-Sung;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.79-91
    • /
    • 2019
  • Renewed interest in the long-term pile foundations has been driven by the increase in offshore wind turbine installation to generate renewable energy. A monopile subjected to repetitive loads experiences an evolution of displacements, pile rotation, and stress redistribution along the embedded portion of the pile. However, it is not fully understood how the embedded pile interacts with the surrounding soil elements based on different pile geometries. This study investigates the long-term soil response around offshore monopiles using finite element method. The semi-empirical numerical approach is adopted to account for the fundamental features of volumetric strain (terminal void ratio) and shear strain (shakedown and ratcheting), the strain accumulation rate, and stress obliquity. The model is tested with different strain boundary conditions and stress obliquity by relaxing four model parameters. The parametric study includes pile diameter, embedded length, and moment arm distance from the surface. Numerical results indicate that different pile geometries produce a distinct evolution of lateral displacement and stress. In particular, the repetitive lateral load increases the global lateral load resistance. Further analysis provides insight into the propagation of the shear localization from the pile tip to the ground surface.

Liquefaction susceptibility of silty tailings under monotonic triaxial tests in nearly saturated conditions

  • Gianluca Bella;Guido Musso
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.247-258
    • /
    • 2024
  • Tailings are waste materials of mining operations, consisting of a mixture of clay, silt, sand with a high content of unrecoverable metals, process water, and chemical reagents. They are usually discharged as slurry into the storage area retained by dams or earth embankments. Poor knowledge of the hydro-mechanical behaviour of tailings has often resulted in a high rate of failures in which static liquefaction has been widely recognized as one of the major causes of dam collapse. Many studies have dealt with the static liquefaction of coarse soils in saturated conditions. This research provides an extension to the case of silty tailings in unsaturated conditions. The static liquefaction resistance was evaluated in terms of stress-strain behavior by means of monotonic triaxial tests. Its dependency on the preparation method, the volumetric water content, the void ratio, and the degree of saturation was studied and compared with literature data. The static liquefaction response was proved to be dependent mainly on the preparation technique and degree of saturation that, in turn, controls the excess of pore pressure whose leading role is investigated by means of the relationship between the -B Skempton parameter and the degree of saturation. A preliminary interpretation of the static liquefaction response of Stava tailings is also provided within the Critical State framework.

A Study on the Atomizing Mechanism for the Swirl Nozzle (와권(渦卷) 노즐의 무화기구(霧化機構)에 관(關)한 연구(硏究))

  • Lee, Sang Woo;Sakai, Jun;Ishihara, Akira
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.81-97
    • /
    • 1987
  • Two nozzles with different size (Figure 2) were particularly designed to supply air through the swirl core into the central part of the liquid stream in the same parallel direction to produce a well-mixed air and water in the whirl chamber as spray liquid in bubble formation. Atomization was attempted to improve by using both the preliminary break-up process with less viscosity and less surface tension in the whirl chamber and the effects of increased frequency of the band of drops with the raised ambient air density in front of the nozzle orifice. The volumetric ratio between spray liquid and air on four levels was used to investigate the effects of air as a component of the mixture on atomization. The results of the experiment were summarized as follows; Droplet size became progressively finer as the operating pressure was increased in the range of $0.70kg/cm^2$ to $6.33kg/cm^2$, which was similar to the previous works. The new atomizing mechanism so-called 'air-center nozzle' gave a narrower range in droplet size distribution with smaller volumetric median diameter (VMD) than that of the existing spray system at a given pressure, which showed the possibility of improvement of atomization in a certain limit. The volumetric median diameter produced by the new atomizing mechanism was decreased from the central region toward the exterior edges across the spray pattern.

  • PDF

Experimental Study on the Velocity Structure of 2-D Density Current Induced by Selective Withdrawal (선택취수에 의한 2차원 밀도류의 흐름특성에 관한 실험적 연구)

  • Lyu, Siwan;Kim, Young Do;Cho, Gilje;Kwon, Jae Hyun;Lee, Nam Joo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.825-832
    • /
    • 2009
  • A series of laboratory experiments has been performed to investigate the flow characteristics of 2-dimensional density currents induced by selective withdrawal, which is commonly suggested as a measure for removal of high turbid water from reservoirs. Saltwater has been used to simulate the density stratification over depth and PIV(Particel Image Velocimetry) for observing the velocity structure. Experimental conditions have been established according to Richardson number, which is the dimensionless number that expresses the ratio of potential to kinetic energy. From the experiments, the patterns of longitudinal decay of centerline axial velocity induced by the withdrawal have been distinguished from other experimental cases. The rate of longitudinal decay increase as the Richardson number increases. The variations of volumetric and momentum flux along the longitudinal axis have also shown to be dependent on Richardson number.

Development of a new injection mold structure for internal gears (새로운 내측기어 성형용 사출성형 금형구조의 개발)

  • Kwon, Youn Suk;Je, Deok Keun;Jeong, Yeong Deug
    • Design & Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.40-44
    • /
    • 2014
  • As a rotating machine element, plastic gears are more and more widely used in such as industrial machine element, since plastic gear is lighter, higher wear-resistance, and higher vibration absorbing ability than metal gears. When operating plastic parts, tooth breakage and fatigue life shortened due to increasing number of applying load and tooth flank temperature rising, such that accuracy of plastic gears is divided from allowable range to cause vibration and noise. On this study, a internal plastic gears are developed which improved the filling balance molding process by a new injection mold structure. The new mold structure called HR3P(hot runner type 3plate mold). As the result from this studies, we obtained a very accurate roundness internal gears by using design of experiment.

  • PDF

Flexural Strength and Ductility of High-Strength R/C Columns subjected to Earthquake Loadings (지진하중을 받는 고강도 콘크리트 기둥의 휨강도와 연성)

  • 박관식;황선경;한병찬;성수용;윤현도;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.145-150
    • /
    • 2001
  • With the increase in the use of High-Strength Concrete(HSC) despite the its weakness like brittle characteristic, it is important to improve the performance of HSC columns, nowadays. Therefore, it is common to use higher strength steel in HSC for the purpose of ductility and strength improvement. This experimental study was set up to investigate the inelastic behavior of HSC(700kg/$cm^{2}$) columns subjected to combined axial and repeated lateral loads. Effects of key variables such as the volumetric ratio of transverse reinforcement, tie configuration and tie yield strength are studied in this research program. Test results indicate that inelastic response of HSC columns improve with proper confinement of core concrete. Increasing the amount of transverse reiuorement results in increased ductility.

  • PDF