DOI QR코드

DOI QR Code

Numerical analysis of offshore monopile during repetitive lateral loading

  • Chong, Song-Hun (Department of Civil Engineering, Sunchon National University) ;
  • Shin, Ho-Sung (Department of Civil and Environmental Engineering, University of Ulsan) ;
  • Cho, Gye-Chun (Department of Civil and Environmental Engineering, Korean Advanced Institute for Science and Technology)
  • Received : 2019.04.17
  • Accepted : 2019.09.09
  • Published : 2019.09.20

Abstract

Renewed interest in the long-term pile foundations has been driven by the increase in offshore wind turbine installation to generate renewable energy. A monopile subjected to repetitive loads experiences an evolution of displacements, pile rotation, and stress redistribution along the embedded portion of the pile. However, it is not fully understood how the embedded pile interacts with the surrounding soil elements based on different pile geometries. This study investigates the long-term soil response around offshore monopiles using finite element method. The semi-empirical numerical approach is adopted to account for the fundamental features of volumetric strain (terminal void ratio) and shear strain (shakedown and ratcheting), the strain accumulation rate, and stress obliquity. The model is tested with different strain boundary conditions and stress obliquity by relaxing four model parameters. The parametric study includes pile diameter, embedded length, and moment arm distance from the surface. Numerical results indicate that different pile geometries produce a distinct evolution of lateral displacement and stress. In particular, the repetitive lateral load increases the global lateral load resistance. Further analysis provides insight into the propagation of the shear localization from the pile tip to the ground surface.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. ABAQUS 6.14 [Computer software], Dassault Systemes, Providence, Rhode Island, U.S.A.
  2. Achmus, M., Kuo, Y.S. and Abdel-Rahman, K. (2009), "Behavior of monopile foundations under cyclic lateral load", Comput. Geotech., 36(5), 725-735. https://doi.org/10.1016/j.compgeo.2008.12.003.
  3. Ahmed, S.S. and Hawlader, B. (2016), "Numerical analysis of large-diameter monopiles in dense sand supporting offshore wind turbine", Int. J. Geomech., 16(5), 04016018. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000633.
  4. API (2000), "Recommended practice for planning, designing and constructing fixed offshore platforms: Working stress design", American Petroleum Institute.
  5. Arshad, M. and O'Kelly, B.C. (2016), "Model studies on monopile behavior under long-term repeated lateral loading", Int. J. Geomech., 17(1), 04016040. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000679.
  6. Barksdale, R.D. (1972), "Laboratory evaluation of rutting in basecourse materials", Proceedings of the 3rd International Conference on Structural Design of Asphalt Pavements, London, U.K., September.
  7. Bienen, B., Duhrkop, J., Grabe, J., Randolph, M. and White, D. (2012), "Response of piles with wings to monotonic and cyclic lateral loading in sand", J. Geotech. Geoenviron. Eng., 138(3), 364-375. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000592.
  8. Bouckovalas, G., Whitman, R. and Marr, W. (1984), "Permanent displacement of sand with cyclic loading", J. Geotech. Eng., 110(11), 1606-1623. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:11(1606).
  9. Briaud, J.L., Smith, T.O. and Meyer, B.J. (1984), "Using the pressuremeter curve to design laterally loaded piles", Proceeding of the 15th Annual Offshore Technology Conference, Houston, Texas, U.S.A., January.
  10. Broms, B.B. (1964), "Lateral resistance of piles in cohesive soils", J. Soil Mech. Found. Div., 90(3), 123-158. https://doi.org/10.1061/JSFEAQ.0000614
  11. Brown, S.F. (1974), "Repeated load testing of a granular material", J. Geotech. Eng. Div., 100(7), 825-841. https://doi.org/10.1061/AJGEB6.0000069
  12. Chang, C. and Whitman, R. (1988), "Drained permanent deformation of sand due to cyclic loading", J. Geotech. Eng., 114(10), 1164-1180. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:10(1164).
  13. Chong, S.H. and Santamarina, J.C. (2016), "Sands subjected to repetitive vertical loading under zero lateral strain: Accumulation models, terminal densities, and settlement", Can. Geotech. J., 53(12), 2039-2046. https://doi.org/10.1139/cgj-2016-0032.
  14. Choo, Y.W. and Kim, D. (2016), "Experimental development of the p-y relationship for large-diameter offshore monopiles in sands: Centrifuge tests", J. Geotech. Geoenviron. Eng., 142(1), 04015058. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001373.
  15. Cuellar, P., Baessler, M. and Rucker, W. (2009), "Ratcheting convective cells of sand grains around offshore piles under cyclic lateral loads", Granul. Matter, 11(6), 379-390. https://doi.org/10.1007/s10035-009-0153-3.
  16. Diyaljee, V.A. and Raymond, G.P. (1982), "Repetitive load deformation of cohesionless soil", J. Geotech. Eng. Div., 108(10), 1215-1229. https://doi.org/10.1061/AJGEB6.0001348
  17. Dyson, G.J. and Randolph, M.F. (2001), "Monotonic lateral loading of piles in calcareous sand", J. Geotech. Geoenviron. Eng., 127(4), 346-352. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(346).
  18. Finn, W.D.L. (1981), "Liquefaction potential: Developments since 1976", Proceedings of the International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, U.S.A., April-May.
  19. Francois, S., Karg, C., Haegeman, W. and Degrande, G. (2010), "A numerical model for foundation settlements due to deformation accumulation in granular soils under repeated small amplitude dynamic loading", Int. J. Numer. Anal. Meth. Geomech., 34(3), 273-296. https://doi.org/10.1002/nag.807.
  20. Garcia-Rojo, R. and Herrmann, H.J. (2005), "Shakedown of unbound granular material", Granul. Matter, 7(2-3), 109-118. https://doi.org/10.1007/s10035-004-0186-6.
  21. Jeong, S., Park, J., Ko, J. and Kim, B. (2017), "Analysis of soil resistance on drilled shafts using proposed cyclic p-y curves in weathered soil", Geomech. Eng., 12(3), 505-522. https://doi.org/10.12989/gae.2017.12.3.505.
  22. Kaggwa, W., Booker, J. and Carter, J. (1991), "Residual strains in calcareous sand due to irregular cyclic loading", J. Geotech. Eng., 117(2), 201-218. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:2(201).
  23. Karg, C., Francois, S., Haegeman, W. and Degrande, G. (2010), "Elasto-plastic long-term behavior of granular soils: Modelling and experimental validation", Soil Dyn. Earthq. Eng., 30(8), 635-646. https://doi.org/10.1016/j.soildyn.2010.02.006.
  24. Koiter, W.T. (1960), General Theorems for Elastic-Plastic Solids, Amsterdam, The Netherlands.
  25. Kulhawy, F.H. (1991), Drilled Shaft Foundations, in Foundation Engineering Handbook, Springer, Boston, Massachusetts, U.S.A., 537-552.
  26. Kuo, Y.S., Achmus, M. and Abdel-Rahman, K. (2012), "Minimum embedded length of cyclic horizontally loaded monopiles", J. Geotech. Geoenviron. Eng., 138(3), 357-363. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000602.
  27. Leblanc, C., Houlsby, G.T. and Byrne, B.W. (2010), "Response of stiff piles in sand to long-term cyclic lateral loading", Geotechnique, 60(2), 79-90. https://doi.org/10.1680/geot.7.00196.
  28. Luong, M.P. (1980), "Stress-strain aspects of cohesionless soils under cyclic and transient loading", Proceeding of the International Symposium on Soils under cyclic and transient loading, Swansea, Wales, U.K., January.
  29. Malhotra, S. (2010), "Design and construction considerations for offshore wind turbine foundations in North America", Proceedings of the GeoFlorida 2010: Advances in Analysis, Modeling & Design, West Palm Beach, Florida, February.
  30. Mayne, P.W. and Holtz, R.D. (1985), "Effect of principal stress rotation on clay strength", Proceeding of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, California, U.S.A., August.
  31. Meyerhof, G.G., Mathur, S.K. and Valsangkar, A.J. (1981), "Lateral resistance and deflection of rigid walls and piles in layered soils", Can. Geotech. J., 18(2), 159-170. https://doi.org/10.1139/t81-021.
  32. Meyerhof, G.G., Sastry, V.V.R.N. and Yalcin, A.S. (1988), "Lateral resistance and deflection of flexible piles", Can. Geotech. J., 25(3), 511-522. https://doi.org/10.1139/t88-056.
  33. Monismith, C.L.N.O. and Freeme, C.R. (1975), "Permenent deformation characteristics of subgrade soils due to repeated loading", Proceedings of the 54th Annual Meeting of the Transportation Research Board, Washington, U.S.A., January.
  34. Narsilio, G.A. and Santamarina, J.C. (2008), "Terminal densities", Geotechnique, 58(8), 669-674. https://doi.org/10.1680/geot.2008.58.8.669.
  35. Niemunis, A., Wichtmann, T. and Triantafyllidis, T. (2005), "A high-cycle accumulation model for sand", Comput. Geotech., 32(4), 245-263. https://doi.org/10.1016/j.compgeo.2005.03.002.
  36. Pasten, C., Shin, H. and Santamarina, J. (2014), "Long-term foundation response to repetitive loading, J. Geotech. Geoenviron. Eng., 140(4), 04013036. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001052.
  37. Peng, J., Clarke, B.G. and Rouainia, M. (2011), "Increasing the resistance of piles subject to cyclic lateral loading", J. Geotech. Geoenviron. Eng., 137(10), 977-982. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000504.
  38. Poulos, H.G. and Davis, E.H. (1980), Pile Foundation Analysis and Design, John Wiley & Sons, New York, U.S.A.
  39. Prasad, Y.V. and Chari, T. (1999), "Lateral capacity of model rigid piles in cohesionless soils", Soil Found., 39(2), 21-29. https://doi.org/10.3208/sandf.39.2_21.
  40. Randolph, M.F. (1981), "The response of flexible piles to lateral loading", Geotechnique, 31(2), 247-259. https://doi.org/10.1680/geot.1981.31.2.247.
  41. Reese, L.C. and Cox, W.R. (1975), "Field testing and analysis of laterally loaded piles in stiff clay", Proceeding of the 7th Annual Offshore Technology Conference, Offshore Technology Conference, Houston, Texas, U.S.A., May.
  42. Reese, L.C., Cox, W.R. and Koop, F.D. (1974), "Analysis of laterally loaded piles in sand", Proceeding of the 6th Annual Offshore Technology Conference, Houston, Texas, U.S.A., May.
  43. Sawczuk, A. (1974), "Shakedown analysis of elastic-plastic structures", Nucl. Eng. Des., 28(1), 121-136. https://doi.org/10.1016/0029-5493(74)90091-0.
  44. Sawicki, A. (1994), "Elasto-plastic interpretation of oedometric test", Arch. Hydro-Eng. Environ. Mech., 41(1-2), 111-131.
  45. Sawicki, A. and Swidzinski, W. (1995), "Cyclic compaction of soils, grains and powders", Powder Technol., 85(2), 97-104. https://doi.org/10.1016/0032-5910(95)03013-Y.
  46. Sharp, R. and Booker, J. (1984), "Shakedown of pavements under moving surface loads", J. Transport. Eng., 110(1), 1-14. https://doi.org/10.1061/(ASCE)0733-947X(1984)110:1(1).
  47. Shi, J., Zhang, Y., Chen, L. and Fu, Z. (2018), "Response of a laterally loaded pile group due to cyclic loading in clay", Geomech. Eng., 16(5), 463-469. https://doi.org/10.12989/gae.2018.16.5.463.
  48. Smith, T.D. (1987), "Pile horizontal soil modulus values", J. Geotech. Eng., 113(9), 1040-1044. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:9(1040).
  49. Stewart, H.E. (1986), "Permanent strains from cyclic variableamplitude loadings", J. Geotech. Eng., 112(6), 646-660. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:6(646).
  50. Suiker, A.S.J. and de Borst, R. (2003), "A numerical model for the cyclic deterioration of railway tracks", Int. J. Numer. Meth. Eng., 57(4), 441-470. https://doi.org/10.1002/nme.683.
  51. Tiwari, B. and Al-Adhadh, A.R. (2014), "Influence of relative density on static soil-structure frictional resistance of dry and saturated sand", Geotech. Geol. Eng., 32(2), 411-427. https://doi.org/10.1007/s10706-013-9723-6.
  52. Tuladhar, R., Maki, T. and Mutsuyoshi, H. (2008), "Cyclic behavior of laterally loaded concrete piles embedded into cohesive soil", Earthq. Eng. Struct. Dyn., 37(1), 43-59. https://doi.org/10.1002/eqe.744.
  53. Wichtmann, T. (2005), "Explicit accumulation model for noncohesive soils under cyclic loading", Ph.D. Dissertation, Ruhr-University Bochum, Bochun, Germany.
  54. Wichtmann, T., Niemunis, A. and Triantafyllidis, T. (2005), "Strain accumulation in sand due to cyclic loading: Drained triaxial tests", Soil Dyn. Earthq. Eng., 25(12), 967-979. https://doi.org/10.1016/j.soildyn.2005.02.022.
  55. Wichtmann, T., Niemunis, A. and Triantafyllidis, T. (2007), "Strain accumulation in sand due to cyclic loading: Drained cyclic tests with triaxial extension", Soil Dyn. Earthq. Eng., 27(1), 42-48. https://doi.org/10.1016/j.soildyn.2006.04.001.
  56. Wichtmann, T., Niemunis, A. and Triantafyllidis, T. (2010a), "Strain accumulation in sand due to drained cyclic loading: On the effect of monotonic and cyclic preloading (Miner's rule)", Soil Dyn. Earthq. Eng., 30(8), 736-745. https://doi.org/10.1016/j.soildyn.2010.03.004.
  57. Wichtmann, T., Niemunis, A. and Triantafyllidis, T. (2010b), "On the determination of a set of material constants for a high-cycle accumulation model for non-cohesive soils", Int. J. Numer. Anal. Meth. Geomech., 34(4), 409-440. https://doi.org/10.1002/nag.821.
  58. Zhang, L., Silva, F. and Grismala, R. (2005), "Ultimate lateral resistance to piles in cohesionless soils", J. Geotech. Geoenviron. Eng., 131(1), 78-83. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:1(78).

Cited by

  1. Performance monitoring of offshore PHC pipe pile using BOFDA-based distributed fiber optic sensing system vol.24, pp.4, 2019, https://doi.org/10.12989/gae.2021.24.4.337