DOI QR코드

DOI QR Code

Liquefaction susceptibility of silty tailings under monotonic triaxial tests in nearly saturated conditions

  • Received : 2023.04.26
  • Accepted : 2024.01.03
  • Published : 2024.02.10

Abstract

Tailings are waste materials of mining operations, consisting of a mixture of clay, silt, sand with a high content of unrecoverable metals, process water, and chemical reagents. They are usually discharged as slurry into the storage area retained by dams or earth embankments. Poor knowledge of the hydro-mechanical behaviour of tailings has often resulted in a high rate of failures in which static liquefaction has been widely recognized as one of the major causes of dam collapse. Many studies have dealt with the static liquefaction of coarse soils in saturated conditions. This research provides an extension to the case of silty tailings in unsaturated conditions. The static liquefaction resistance was evaluated in terms of stress-strain behavior by means of monotonic triaxial tests. Its dependency on the preparation method, the volumetric water content, the void ratio, and the degree of saturation was studied and compared with literature data. The static liquefaction response was proved to be dependent mainly on the preparation technique and degree of saturation that, in turn, controls the excess of pore pressure whose leading role is investigated by means of the relationship between the -B Skempton parameter and the degree of saturation. A preliminary interpretation of the static liquefaction response of Stava tailings is also provided within the Critical State framework.

Keywords

Acknowledgement

The Authors wish to thank Dr. A. Azizi, Dr. O. Pallara, and Mr. G. Bianchi (Politecnico di Torino) for their help during the laboratory tests presented in this work.

References

  1. Abdallah, K., Abdelkader, B., Ahmed, A., Eddine, B.D. and Marwan, S. (2021), "A laboratory study of shear strength of partially saturated sandy soil", Geomech. Geoeng., 1-10. https://doi.org/10.1080/17486025.2020.1864034.
  2. Alonso, E.E. and Gens, A. (2006), "Aznalcollar dam failure. Part1: Field observations and material properties", Geotechnique, 56(3), 165-183. https://doi.org/10.1680/geot.2006.56.3.165.
  3. Arab, A., Belkhatir M. and Sadek, M. (2015), "Saturation effect on behaviour of sandy soil under monotonic and cyclic loading: A laboratory investigation", Geotech. Geol. Eng., 34(1), 347-358. https://doi.org/10.1007/s10706-015-9949-6.
  4. ASTM D2216-19 Standard test methods for laboratory determination of water (Moisture) content of soil and rock by mass.
  5. Becker, L.D.B., Ehrlich, M. and Barbosa, M.C. (2023), "Discussion of "Stability Analysis of Upstream Tailings Dam Using Numerical Limit Analyses", J. Geotech. Geoenviron. Eng., 149(3). https://doi.org/10.1061/JGGEFK.GTENG-11272.
  6. Been, K. and Jefferies, M. (1985), "A state parameter for sands". Geotechnique, 35(2), 99-112. https://doi.org/10.1680/geot.1985.35.2.99.
  7. Bella, G. (2017), "Hydro-Mechanical behaviour of tailings in unsaturated conditions", Ph.D. Dissertation, Politecnico di Torino, Torino.
  8. Bella, G. (2021), "Water retention behaviour of tailings in unsaturated conditions", Geomech. Eng., 26(2), 117-132. https://doi.org/10.12989/gae.2021.26.2.117.
  9. Bella, G. and Musso, G. (2022), "Water retention response of unsaturated Stava tailings", Proceedings of the 8th International Conference on Tailings Management (TAILINGS 2022), Hugo Quelopana, 6/8 of July, 2022.
  10. Bella, G., Lameiras, F., Esposito, T., Barbero, M. and Barpi, F. (2017), "Aging simulation of the tailings from stava fluorite extraction by exposure to gamma rays", Revista Escola de Minas, 70(4). https://doi.org/10.1590/0370/-44672016700-163.
  11. Bella, G., Ghezzi, S., Czerski, D., Ambrosi, C., Luscher, M. and Giani, M. (2024), "Preliminary evaluation of the effects of the unsaturated conditions on the compressibility and pre-shearing state of stress of quarzitic tailings", Proceedings of the 9th International Conference on Geotechnical Research and Engineering (ICGRE 2024), Avestia Publishing, 14/16 of April 2024, London, UK. https://doi.org/10.11159/icgre24.121.
  12. Bella, G. and Musso, G. (2023), "Hydro-mechanical behaviour and Critical State Conditions of unsaturated silty tailings", Proceedings of the 8th International Conference on Geotechnical Research and Engineering (ICGRE 2023), Avestia Publishing, 29/31 of March 2023, Lisbona, Portugal. https://doi.org/10.11159/icgre23.114.
  13. Bhanbhro, R. (2014), "Mechanical properties of tailings - basic description of a tailings material from Sweden", Ph.D. Dissertation, Lulea University of Technology, Sweden.
  14. Bishop, A.W. (1973), "The influence of an undrained change in stress on the pore-pressure in porous media of low compressibility", Geotechnique, 23(3), 435-442. https://doi.org/10.1680/geot.1973.23.3.435.
  15. Carmo, F.F., Kamino, L., Juniora, R., de Camposa, C., do Carmoa, F., Silvino, G., de Castro, K., Mauro, M., Rodrigues, N., Miranda, M. and Pinto C. (2017), "Fundao tailings dam failures: the environment tragedy of the largest technological disaster of Brazilian mining in global context", Perspect. Ecol. Conserv., 15(3), 145-151. https://doi.org/10.1016/j.pecon.2017.06.002.
  16. Carrera, A. (2008), "Mechanical behaviour of Stava tailings", Ph.D. Dissertation, Politecnico di Torino, Torino.
  17. Carrera, A., Coop, M. and Lancellotta, R. (2011), "Influence of grading on the mechanical behaviour of Stava tailings", Geotechnique, 61(11), 935-946. https://doi.org/10.1680/geot.9.P.009.
  18. Chu J., Leong, W.K. and Loke, W.L. (2003), "Discussion of "defining an appropriate steady state line for Marriespruit gold tailings", Can. Geotech. J., 40(2), 484-486. https://doi.org/10.1139/t02-118.
  19. Carrier, W.D. (1991), "La ingegneria Geotecnica nella Salvaguardia e Recupero del Territorio", Proceedings of the 15th Conference of Geotechnics of Turin (XV CGT), 20/22 November, 1991, Torino, Italy.
  20. Correa, M.M. and Filho, W.O. (2019), "Impact of methods used to reconstitute tailing specimens on the liquefaction potential assessment of tailing dams", Revista Escola de Minas, 72(3). https://doi.org/10.1590/0370-44672018720164.
  21. Daouadji, A., AlGali, H., Darve, F. and Zeghloul, A. (2010). "Instability of granular materials: Experimental evidence of diffuse mode of failure for loose sands", J. Eng. Mech., 136(5), 575-588. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000101.
  22. Davies, M., Martin, T. and Lighthall, P. (2000), "Mine Tailing Dams: When Things Go Wrong". Proceedings of the Tailing Dams 2000, Association of State Dam Safety Officials, U.S. Committee on Large Dams, Las Vegas, Nevada. http://www.infomine.com/publications/docs/Davies2002d.pdf.
  23. Deng, D., Wen, S., Lu, K. and Li, L. (2020) "Calculation model for the shear strength of unsaturated soil under nonlinear strength theory", Geomech. Eng., 21(3), 247-258. https://doi.org/10.12989/gae.2020.21.3.247.
  24. Flora, A., Bilotta, E., Lirer, S., Mele, L. and Modoni, G. (2023), "Liquefaction mechanism and mitigation techniques", Italian Geotech. J., 2, 33-88. https://doi.org/10.19199/2023.2.0557-1405.033.
  25. Fredlund, D.G., Rahardjo, H. and Fredlund, M.D. (2012), Unsaturated soil mechanics in Engineering Practice. John Wiley and Sons. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(286).
  26. Gajo, A., Piffer, L. and de Polo, F. (2000), "Analysis of certain factors affecting the unstable behaviour of saturated loose sand", Mech. Cohesive-Frictional Mater., 5(3), 215-237. https://doi.org/10.1002/(SICI)1099-1484(200004)5:3<215::AID-CFM92>3.0.CO;2-7
  27. Gallipoli, D., Wheeler, S.J. and Karstunen, M. (2003), "Modelling the variation of degree of saturation in a deformable unsaturated soil", Geotechnique, 53(1), 105-112. https://doi.org/10.1680/geot.2003.53.1.105.
  28. Girardi, V. and Bella, G. (2023), "Application of the Material Point Method to the study of tailing dams failure due to static liquefaction", Proceedings of the 8th Convegno Nazionale dei Ricercatori di Ingegneria Geotecnica (CNRIG 2023), Associazione Geotecnica Italiana Publishing, 05/07 of July 2023, Palermo, Italy. https://doi.org/10.1007/978-3-031-34761-0_53.
  29. Horn-Da, L., Chien-Chih, W. and Xu-Hui, W. (2018), "A simplified method to estimate the total cohesion of unsaturated soil using an UC test", Geomech. Eng., 16(6), 599-608. https://doi.org/10.12989/gae.2018.16.6.599.
  30. Leong, W.K., Chu, J. and Teh, C.I. (2000). "Liquefaction and instability of a granular fill material", Geotech. Test. J., 23(2), 178-192. https://doi.org/10.1520/GTJ11042J.
  31. Lucchi, G. (2015), "Genesi, cause e responsabilita della catastrofe del 19 luglio 1985 in val di Stava", Proceedings of the "La sicurezza dei riempimenti di terra: bacini di decantazione, colmate e discariche", 15-19 of July, Stava, Italy.
  32. Lucchi, G. (2020), "Tailing Dams: lezioni dal passato e dal presente. Stava: cause e responsabilita", Online Conference, GEAM.
  33. Marabet, K., Benessalah, I., Chemmam, M. and Arab, A. (2019), "Laboratory study of shear strength response of Chlef natural sand: effect of saturation", Marine Georesour. Geotec., 38(1), 1-7. https://doi.org/10.1080/1064119X.2019.1595792.
  34. Mavko, G., Mukerji, T. and Dvorkin, J. (2009), "The rock physics handbook", Cambridge University Press.
  35. Mele, L., Chiaradonna, A., Lirer, S. and Flora, A. (2021), "A robust empirical model to estimate earthquake-induced excess pore water pressure in saturated and non-saturated soils", Bull. Earthq. Eng., 19(10), 3865-3829. https://doi.org/10.1007/s10518-020-00970-5.
  36. Mele, L. and Flora, A. (2019a), "On the prediction of liquefaction resistance of unsaturated sands", Soil Dyn. Earthq. Eng., 125, 1-12. https://doi.org/10.1016/j.soildyn.2019.05.028.
  37. Mele, L., Tan Tian, J., Lirer, S., Flora, A. and Koseki, J. (2019b), "Liquefaction resistance of unsaturated sands: experimental evidence and theoretical interpretation", Geotechnique, 69(6), 541-553. https://doi.org/10.1680/jgeot.18.P.042.
  38. Morgenstern, N.R., Steven, G.V., Cassio, B.V. and Bryan, D.W. (2016), "Fundao tailings dam review panel - report on the immediate causes of the failure of the Fundao Dam", Panel Report - 25 August, 2016.
  39. Nagao, K., Suemasa, N., Jinguuji, M. and Nakazawa, H. (2015), "In-situ applicability test of soil improvement for housing sites using Micro-Bubbles against soil liquefaction in URAYASU", Proceedings of the 25th international ocean and polar engineering conference, 21/26 June 2015, Kona, Hawaii, USA.
  40. Olson, S.M., Stark, T.D., Walton, W.H. and Castro, G. (2000), "1907 Static liquefaction flow failure of the North Dike of Wachusett Dam", J. Geotech. Geoenviron. Eng., 126(12), 1184-1193. https://doi.org/10.1061/(ASCE)10-90-0241(2000)126:12(1184).
  41. Okamura, M., Takebayashi, M., Nishida, K., Fujii, N., Jinguji, M., Imasato, T., Yasuhara, H. and Nakagawa, E. (2010), "In-Situ desaturation test by air injection and its evaluation through field monitoring and multiphase flow simulation", J. Geotech. Geoenviron. Eng., 137(7), 643-652. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000483.
  42. Okamura, M. and Soga, Y. (2006), "Effects of pore fluid compressibility on liquefaction resistance of partially saturated sand", Soils Found., 46(5), 695-700. https://doi.org/10.3208/sandf.46.695.
  43. Pirulli, M, Barbero, M., Marchelli, M. and Scavia, C. (2017), "The failure of the Stava Valley tailings dams (Northern Italy): numerical analysis of the flow dynamics and rheological properties". Geoenviron. Disasters, 4(3), 1-15. https://doi.org/10.1186/s40677-016-0066-5.
  44. Reuss, A. (1929), "Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle. Z. Angew", Math. Mech., 9, 49-58. https://doi.org/10.1002/zamm.19290090104
  45. Rico, M., Benito, G. Salgueiro, A.R, Diez-Herrero, A. and Pereira H.G. (2008), "Reporting tailings dam failure - A review of the European incidents in the worldwide context", J. Hazardous Mater., 152(2), 846-852. https://doi.org/10.1016/j.jhazmat.2007.07.050.
  46. Sarsby, R. (2013), Environmental Geotechnics, ICE Publishing.
  47. Tran, K.H., Imanzadeh, S., Said Taibi, Hanene Souli, Jean-Marie Fleureau and Mahdia Hattab (2023), "Liquefaction of unsaturated soils- volume change and residual shear strength", Eur. J. Environ. Civil Eng., 27(3), 1144-1164. https://doi.org/10.1080/19648189.2022.2075471.
  48. Tsukamoto, Y. (2019), "Degree of saturation affecting liquefaction resistance and undrained shear strength of silty sands", Soil Dyn. Earthq. Eng., 124, 365-373. https://doi.org/10.1016/j.soildyn. 2018.04.041.
  49. Tsukamoto, Y., Kawabe, S., Matsumoto, J. and Hagiwara, S. (2014), "Cyclic resistance of two unsaturated silty sands against soil liquefaction", Soils Found., 54(6), 1094-103. https://doi.org/10.1016/j.sandf.2014.11.005.
  50. Unno, T., Kazama, M., Uzoka, R. and Sento, N. (2008), "Liquefaction of unsaturated sand considering the pore air pressure and volume compressibility of the soil particle skeleton", Soils Found., 48(1), 87-99. https://doi.org/10.3208/sandf.48.87.
  51. Unno, T., Kazama, M., Sento, N. and Uzuoka, R. (2006), "Cyclic shear behavior of unsaturated volcanic sandy soil under various suction conditions", Geotech. Special Publication, 147(1), 1133.
  52. Vernay, M., Morvan, M. and Breul, P. (2018), "Influence of saturation degree on soil behavior toward liquefaction", Proceedings of the 7th International Conference on Unsaturated Soils, 03/05 of August 2018, Hong Kong.
  53. Vernay, M., Morvan, M. and Breul, P. (2017), "Influence of saturation degree on soil liquefaction behavior", Proceedings of the 3rd International Conference on Performance-based Design in Earthquake Geotechnical Engineering (PBD-III), 16/19 of July 2017, Vancouver, Canada.
  54. Wanatowski, D. and Chu, J. (2007). "Static liquefaction of sand in plane strain", Can. Geotech. J., 44(3), 299-313. https://doi.org/10.1139/t06-078.
  55. Wang, H., Koseki, J., Sato, T., Chiaro, G. and Tan Tian, J. (2016), "Effect of saturation on liquefaction resistance of iron ore fines and two sandy soils", Soils Found., 56(4), 732-44. https://doi.org/10.1016/j.sandf.2016.07.013.
  56. Whittle, A.J., El-Naggar, H.M., Aky, S.A.Y. and Galaa, A.M. (2022), "Stability analysis of upstream tailings dam using numerical limit analyses", J. Geotech. Geoenviron. Eng., 148(6). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002792.
  57. Zeybek, A. (2022), "Experimental and empirical studies to evaluate liquefaction resistance of partially saturated sands", Appl. Sci., 13(81), 1-23. https://doi.org/10.3390/app13010081.
  58. Zhang, B., Muraleetharan, K.K. and Liu, C. (2016), "Liquefaction of unsaturated sands", Int. J. Geomech., 16(6), 1-8. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000605.
  59. Zuoan, W., Yulong C., Guangzhi, Y., Yonghao, Y. and Weimin, S. (2019), "An alternative upstream method for the Zhelamuqing tailings impoundment construction of a Copper Mine in China", Geomech. Eng., 19(5), 383-392. https://doi.org/10.12989/gae.2019.19.5.383.