• Title/Summary/Keyword: Volumetric Heat Transfer Coefficient

Search Result 19, Processing Time 0.025 seconds

A Study on Characteristics of Direct Contact LNG Evaporator (직접접촉식 액화천연가스 기화기의 특성에 관한 연구)

  • 한승탁;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.903-911
    • /
    • 1994
  • This study addresses the phenomena of bubbling, icing, eruption, component varieties of the evaporated natural gas, and volumetric heat transfer coefficients obtained during the operation of a proposed LNG evaporator between LNG and water in direct contact. In the present investigation, the explosive and eruption phenomena within the water column were not observed during the entire operation of the heat exchanger. Compared with the natural gas produced by conventional LNG evaporator, the analysis of the gas produced by the direct contact LNG evaporator shows that nitrogen, methane, and ethane components were reduced by 0.002~0.007mol%(4~14%), 1.6~1.92mol%(1.9~2.3%) and 0.17~1.28mol%(1.1~8.4%) respectively, while the moisture content was rather increased by 0.51~0.76mol%. The maximum volumetric heat transfer coefficient of the direct contact heat exchanger was found to be $21, 800kW/m^3\cdotK$.

Thermal Performance Characteristics of Closed-Wet Cooling Tower (밀폐형 냉각탑의 열성능 특성에 관한 실험적 연구)

  • Sarker, M.M.A.;Kim, E.P.;Moon, C.G.;Yoon, J.I.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.88-92
    • /
    • 2005
  • The experiment of thermal performance about closed-wet cooling tower was conducted in this study. A closed cooling tower is a device similar to a general cooling tower, but with cooling tower replaced by a heat exchanger. The test section for this experiment has the process that the cooling water flows from the top of the heat exchanger to the bottom side in the inner part of the tube, and spray water flows in the gravitational direction in the outer side. Air comes in direct contact with the spray water at the outer side of the tube while passing from the lower the upper part having a counterflow to the spray water. The heat transfer pipe used in this experiment is a bare-type tube having an outer diameter of 15.88mm. The heat exchanger is consisted of seven rows and fifteen columns. In this experiment, thermal performance of the cooling tower is derived from overall heat transfer coefficients between the process fluid and sprayed water and volumetric overall mass transfer coefficient between sprayed water and air.

  • PDF

A Study on the Leakage Analysis of Scroll Compressor with Thermal Deformation Considered (열변형을 고려한 스크롤 압축기의 누설 해석에 관한 연구)

  • Gu, In-Hoe;Park, Jin-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2428-2437
    • /
    • 2000
  • In general, it is known that the portion of leakage loss is more than 20 % of total loss in scroll compressor. So far many studies have been done to improve the leakage problem and volumetric efficiency. In order to do this it is necessary that the leakage is exactly evaluated for conventional scroll model. Almost all studies that have been done were assumed that the clearance remains constant while operating. But in actual operating conditions, scroll wrap is deformed due to elevated refrigerant gas temperature. And this makes the leakage clearance change, so the leakage mass flow and the volumetric efficiency are also changed. In this study we assumed the steady state operating condition and obtain the average temperature and convection heat transfer coefficient in terms of involute angle. With these results, using finite element method we analyzed the heat transfer of scroll wrap, then did thermal deformation analysis. Then we obtain the leakage clearance and do the leakage and volumetric efficiency analysis. Compared with undeformed feature, we examine the effect of the thermal deformation on the leakage. The results say that the leakage mass flow for the case of considering thermal deformation is less than that for the unconsidered one, and this means that the leakage clearance is reduced due to thermal deformation.

Heat Transfer Characteristics of Direct Contact Heat Exchanger Using Solar Energy (태양열이용 직접접촉 열교환기내의 열전달 특성연구)

  • 강용혁;전명석;윤환기;천원기
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.78-81
    • /
    • 1995
  • In the present study, the spray column type of direct contact heat exchangers are studied experimentally to analyze heat transfer characteristics for solar energy utilization. These experiments are carried out in the line of solar heating system, major results are as follows ; 1) the flow and aspect of working fluid drop for maxium heat transfer 2) efficiency and volumetric heat transfer coefficient of D. C. H. X. with a heavier working fluid are higher than those of D. C. H. X. with a lighter working fluid

  • PDF

A CFD ANALYSIS ON THE INFLUENCE OF OPERATING CONDITIONS AND EJECTOR CONFIGURATION ON THE HYDRODYNAMICS AND MASS TRANSFER CHARACTERISTICS OF GAS-LIQUID EJECTOR

  • Utomo, Tony;Jin, Zen-Hua;Yi, Chung-Seub;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2817-2822
    • /
    • 2007
  • The purpose of this paper is to study the influence of operating condition and ejector geometries on the hydrodynamics and on the mass transfer characteristic of ejector. The CFD results were validated with available experimental data. Flow field analyses and predictions of ejector performance were also carried out. Variation on the operating conditions was made by varying the gas-liquid flow rate ratio in the range of 0.2 to 1.2. The ejector configuration was also varied on the length to diameter ratio of mixing tube ($L_M/D_M$) in the range of 4 to 10. CFD studies show that at $L_M/D_M$ 5.5, the volumetric mass transfer coefficient increases with respect to gas flow rates. Meanwhile, at $L_M/D_M$ 4, the plot of volumetric mass transfer coefficient to gas-liquid flow rates ratio reach maximum at gas-liquid flow rates ratio of 0.6. This study also shows that volumetric mass transfer coefficient decrease with respect to the increase of mixing tube length.

  • PDF

Mass transfer characteristics of benzene in nonpolar solution (비극성용매 내의 벤젠 물질전달특성)

  • 최성우;김혜진;박문기
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.605-610
    • /
    • 2002
  • The absorption of benzene in nonpolar solution was studied in a laboratory-scale of bubble column varying of gas flow rates and gas-to-liquid ratios. A bubble column had a 0.8∼l$\times$10$\^$-3/ m$^3$ total volume (height 1500 mm, diameter 50 mm). Solution analysis was performed by GC-FID and GC-MSD. The objectives of this research were to select the best absorption fluid and to evaluate the mass transfer characteristics under specific conditions of each absorption. The results of this research were follow as: First, the heat transfer fluid is more efficient than the other nonpolar solution in removing VOC. Second, The benzene removal efficiency improved according to an increasing rate of gas flow. Also, volumetric mass transfer rate of column can be enhanced by increasing gas flow rate. Finally, the relation of gas flow rates, liquid amount, and volumetric mass transfer coefficient was obtained as follows. K$\_$y/a: 0.5906(V$\_$g//L)$\^$0.7611/ The following correlation of mass transfer coefficient and efficiency was proposed. v= 0.06078 K$\_$y/a$\^$0.2444/.

Heat Transfer Characteristics of the U-shape Heat Pipe using Working Fluid of PFC (PFC 작동유체 사용 U형 히트파이프의 열전달특성 연구)

  • 이기우;박기호;전원표
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.796-802
    • /
    • 2001
  • The purpose of the present study is to examine the heat transfer characteristics of the U-shape heat pipe for the cooling of semiconductor in subway train. Perflouro-carbon(PFC) was used as working fluid. Temperature distribution on the surface and heat transfer coefficients were investigated according to the working fluid volume percent and heating rate. The results were as follows; Optimum volumetric percent of working fluid was from 80% to 90%, and hat transfer coefficients of evaporation and condensation were as follows, respectively. $\hbar_ie=0.37\times(\frac{P_i}{P_O})$l_c}^0.3$,$\hbar_ic-4.2(\frac{\kappa_l^3p_l^2gh_fg}{\mu_lq_c_l_c}^\frac{1}{3}

  • PDF

A Study on the Improvement of Heat Transfer Performance in Low Temperature Closed Thermosyphon

  • Han, Kyu-Il;Yee, Seok-Su;Park, Sung-Hyun;Lee, Suk-Ho;Cho, Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1102-1111
    • /
    • 2002
  • The study focuses on the heat transfer performance of two-phase closed thermosyphons with plain copper tube and tubes having 50, 60, 70, 80, 90 internal grooves. Three different working fluids(distilled water, methanol, ethanol) are used with various volumetric liquid fill charge ratio from 10 to 40%. Additional experimental parameters such as operating temperature and inclination angle of zero to 90 degrees are used for the comparison of heat transfer performance of the thermosyphon. Condensation and boiling heat transfer coefficients, heat flux are obtained using experimental data for each case of specific parameter. The experimental results are assessed and compared with existing correlations. The results show that working fluids, liquid fill charge ratio, number of grooves and inclination angle are very important factors for the operation of thermosyphons. The relatively high rate of heat transfer is achieved when the thermosyphon with internal grooves is used compared to that with plain tube. The optimum liquid fill charge ratio for the best heat transfer performance lies between 25% and 30%. The range of the optimum inclination angle for this study is 20$^{\circ}$~30$^{\circ}$ from the horizontal position.

A Study on Efficiency Enhancement in a Reciprocating Compressor for a Domestic Refrigerator (소형 냉장고용 왕복동식 압축기의 효율향상에 관한 연구)

  • Sim Yun-Hee;Youn Young;Park Youn Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.418-426
    • /
    • 2005
  • Efficiency of the compressor is most important parameter in the domestic refrigerator which runs year around. With developed analytical model about heat transfer analysis in the hermetic compressor, parametric study was performed to know the effect on efficiency by design and material modification of the compressor. Volumetric efficiency of the compressor increased approximately $3\%$ when insulation is increased about $50\%$ in suction component. However, the insulation effect on discharge component was only $1\%$. When the thermal conductivity of the discharge plenum is reduced from 300 to 20 $W/m{\cdot}K$, volumetric efficiency increased about $3.1\%$. There is no attraction in efficiency increment with variation of outside surface area of the compressor and radial heat transfer coefficient of the solid component in the compressor shell.

The Effect of Nozzle Characteristics on the Mist-Cooling Heat Transfer (노즐특성에 따른 MIST-COOLING 열전달에 관한 실험적 연구)

  • Lee, J.W.;Kang, Y.G.;Baek, B.J.;Park, B.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.3
    • /
    • pp.171-178
    • /
    • 1992
  • The effect of nozzle characterristics on the mist-cooling heat transfer was investigated under the various flow conditions. Two different types of twin fluid nozzle were used, one is a $90^{\circ}$ angle tip nozzle with needle and the other is a $90^{\circ}$ angle tip non-needle nozzle. The cooling rate from the heated surface was measured and obtained the boiling curve as a function of surface temperature. An immersion sampling was employed for the measurement of droplet size of the spray. As a result of this experiment, the liquid sheet type nozzle shows better atomization when the mass ratio Mr>2.0, and collects more liquid droplets on the heated surface that results in better cooling effect. It was found that the maximum heat flux and heat transfer coefficient increased with increase in the volumetric flow rate, whereas the maximum heat flux decreased with increase in spray distance. The cooling effect depends upon the amount of collected droplet and droplet size, but it strongly depends upon the amount of collected droplet.

  • PDF