본 연구에서는 고체추진제를 사용하는 closed bomb test(CBT)의 연소에 대한 정밀 모델링 및 해석을 수행하였다. 기상과 고상을 동시에 해석하기 위해 fluid structure interaction(FSI) 기법을 사용하였으며 기체상과 그레인의 연소해석은 Eulerian 방법을, 그레인의 이동은 Lagrangian 방법을 적용하였다. 고체상의 그레인과 연소가스의 상호 작용은 소스텀을 통해 완전 결합(fully coupled) 되도록 하였다. 그레인의 연소거리와 연소면의 이동을 모사하기 위하여 volume of fluid(VOF) 방법을 사용하였고, 그레인에 작용하는 힘은 그레인 연소면에 작용하는 압력과 중력을 고려하고, VOF의 속도항에 그레인 연소속도와 그레인 이동속도를 고려하였다. 개발한 수치모델을 바탕으로 1개와 3개 그레인에 대한 연소해석을 수행하여 실험결과와 비교 검증하였다. 연소시에 나타나는 압력 섭동에 대한 음향장을 분석하였다.
Fakhar, Mohammad Hosein;Fakhar, Ahmad;Tabatabaei, Hamidreza
Steel and Composite Structures
/
제30권3호
/
pp.281-292
/
2019
In this paper, analysis of critical fluid velocity and heat transfer in the nanocomposite pipes conveying nanofluid is presented. The pipe is reinforced by carbon nanotubes (CNTs) and the fluid is mixed by $AL_2O_3$ nanoparticles. The material properties of the nanocomposite pipe and nanofluid are considered temperature-dependent and the structure is subjected to magnetic field. The forces of fluid viscosity and turbulent pressure are obtained using momentum equations of fluid. Based on energy balance, the convection of inner and outer fluids, conduction of pipe and heat generation are considered. For mathematical modeling of the nanocomposite pipes, the first order shear deformation theory (FSDT) and energy method are used. Utilizing the Lagrange method, the coupled pipe-nanofluid motion equations are derived. Applying a semi-analytical method, the motion equations are solved for obtaining the critical fluid velocity and critical Reynolds and Nusselt numbers. The effects of CNTs volume percent, $AL_2O_3$ nanoparticles volume percent, length to radius ratio of the pipe and shell surface roughness were shown on the critical fluid velocity, critical Reynolds and Nusselt numbers. The results are validated with other published work which shows the accuracy of obtained results of this work. Numerical results indicate that for heat generation of $Q=10MW/m^3$, adding 6% $AL_2O_3$ nanoparticles to the fluid increases 20% the critical fluid velocity and 15% the Nusselt number which can be useful for heat exchangers.
This paper deal with the critical fluid velocity response of nanocomposite pipe conveying fluid based on numerical method. The pressure of fluid is obtained based on perturbation method. The motion equations are derived based on classical shell theory, energy method and Hamilton's principle. The shell is reinforced by nanoparticles and the distribution of them are functionally graded (FG). The mixture rule is applied for obtaining the equivalent material properties of the structure. Differential quadrature method (DQM) is utilized for solution of the motion equations in order to obtain the critical fluid velocity. The effects of different parameters such asCNT nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios and internal fluid are presented on the critical fluid velocity response structure. The results show that with increasing the CNT nanoparticles, the critical fluid velocity is increased. In addition, FGX distribution of nanoparticles is the best choice for reinforcement.
본 논문에서는 입자가 부상된 2상유동의 해석에서 여러유동조건의 유동을 공 통적으로 해석할 수 있고 또 유동의 난류구조를 규명할 수 있도록 하기 위해서 2-방정 식 난류모델을 적용하였고 또 지배방정식들 속에 나타나는 1유체와 2유체의 2차 상관 관계들을 모형화 할 때 Taweel and Landau의 스펙트럼 이론을 확장발전시켜 적용하였 다.
The present study describes a numerical analysis for simulation of the sloshing of flows with free-surface which contained in a rectangular tank The SOLA-VOF (Volume of fluid) method uses a fixed mesh for calculating the motion of flow and the free-surface. This Eulerian approach enables the VOF method to use only a small amount of computer memory for simulating sloshing problems with complicated free-surface contours. The VOF function, representing the volume fraction of a cell occupied by the fluid, is calculated for each cells, which gives the locating of the free-surface filling any some fraction of cells with fluid. Using SOLA-VOF method, the study describes visualization about simulation of the sloshing of flows and damping effect by baffle. Translation and pitching motion of the forms have been investigated The time-dependent changes of free-surface height are used for visualization subject to several conditions such as fluid height horizontal acceleration, sinusoidal motion, and viscosity. The free-surface heights were used for comparing wall-force, which is caused by sloshing of flows. Baffle was Installed to reduce the force on the wall by sloshing of flows. Damping effects was extensively expressed under the conditions such as baffle shape and position.
An adaptive modeling and simulation technique is introduced for the effective and reliable fluid-structure interaction analysis using MSC/Dytran for large-scale complex pressurized liquid containment. The proposed method is composed of a series of the global rigid sloshing analysis and the locally detailed fluid-structure analysis. The critical time at which the system exhibits the severe liquid sloshing response is sought through the former analysis, while the fluid-structure interaction in the local region of interest at the critical time is analyzed by the latter analysis. Differing from the global coarse model, the local fine model considers not only the complex geometry and flexibility of structure but the effect of internal pressure. The locally detailed FSI problem is solved in terms of multi-material volume fractions and the flow and pressure fields obtained by the global analysis at the critical time are specified as the initial conditions. An in-house program for mapping the global analysis results onto the fine-scale local FSI model is developed. The validity and effectiveness of the proposed method are verified through an illustrative numerical experiment.
This study concerns the performance of condensation heat transfer in plain and grooved thermosyphons. Distilled water, methanol, ethanol have been used as the working fluids. In the present work, a copper tube of the length of 1200mm and 14.28mm of inside diameter is used as the container of the thermosyphon. Each of the evaporator and the condenser section has a length of 550mm, while the remaining part of the thermosyphon tube is adiabatic section. A study was carried out with the characteristics of heat transfer of the thermosyphon 50, 60, 70, 80, 90 helical grooves in which boiling and condensation occur. The liquid filling as the ratio of working fluid volume to total volume of thermosyphon, the kinds of working fluid, the inclination angle, grooves and operating temperature have been used as the experimental parameters. The experimental results show that the number of grooves, the amount of the working fluid, the kind of working fluid, angle of inclination angle are very important factors for the operation of thermosyphon. The maximum heat transfer was obtained when the liquid fill was about 20 to 25 % of the thermosyphon volume. The relatively high rates of heat transfer have been achieved in the thermosyphon with grooves. The helical grooved thermosyphon having 70 to 80 grooves in water, 60 to 70 grooves in methanol and 70 to 80 grooves in ethanol shows the best heat transfer coefficient in both condensation.
Purpose: Peri-implant sulcular fluid (PISF) has a production mechanism similar to gingival crevicular fluid (GCF). However, limited research has been performed comparing their behavior in response to inflammation. Hence, the aim of the present study was to comparatively evaluate PISF and GCF volume with varying degrees of clinical inflammatory parameters. Methods: Screening of patients was conducted. Based on the perimucosal inflammatory status, 39 loaded implant sites were selected from 24 patients, with equal numbers of sites in healthy, peri-implant mucositis, and peri-implantitis subgroups. GCF collection was done from age- and sex-matched dentate patients, selected with gingival inflammatory status corresponding to the implant sites. Assessment of the inflammatory status for dental/implant sites was performed using probing depth (PD), plaque index/modified plaque index (PI/mPI), gingival index/simplified gingival index (GI/sGI), and modified sulcular bleeding index (BI). Sample collection was done using standardized absorbent paper strips with volumetric evaluation performed via an electronic volume quantification device. Results: Positive correlation of the PISF and GCF volume was seen with increasing PD and clinical inflammatory parameters. A higher correlation of GCF with PD (0.843) was found when compared to PISF (0.771). PISF expressed a higher covariation with increasing grades of sGI (0.885), BI (0.841), and mPI (0.734), while GCF established a moderately positive correlation with GI (0.694), BI (0.696), and PI (0.729). Conclusions: Within the limitations of this study, except for minor fluctuations, GCF and PISF volumes demonstrated a similar nature and volumetric pattern through increasing grades of inflammation, with PISF showing better correlation with the clinical parameters.
In this paper, critical fluid velocity and frequency of laminated pipe conveying fluid are presented. Each layer of the pipe is reinforced by functionally graded carbon nanotubes (FG-CNTs). The internal fluid is assumed turbulent and the induced forces are calculated by momentum equations. The pipe is resting on viscoelastic foundation with spring, shear and damping constants. The motion equations are derived based on classical shell theory and energy method. Differential quadrature method (DQM) is used for solution and obtaining the critical fluid velocity. The effects of volume percent and distribution of CNT, boundary condition, lamina layer number, length to radius ration of pipe, viscoelastic medium and fluid velocity are shown on the critical fluid velocity. Results show that with increasing the lamina layer number, the critical fluid velocity increases.
Ali Chen;Omidreza Masoudian;Gholamreza Soleimani Jafari
Structural Engineering and Mechanics
/
제91권6호
/
pp.567-581
/
2024
In this paper, an effort is made to present a detailed analysis of dynamic behavior of functionally graded carbon nanotube-reinforced pipes under the influence of an accelerating moving load. Again, the material properties of the nanocomposite pipe will be determined by following the rule of mixtures, considering a specific distribution and volume fraction of CNTs within the pipe. In the present study, temperature-dependent material properties have been considered. The Navier-Stokes equations are used to determine the radial force developed by the viscous fluid. The structural analysis has been carried out based on Reddy's higher-order shear deformation shell theory. The equations of motion are derived using Hamilton's principle. The resulting differential equations are solved using the Differential Quadrature and Integral Quadrature methods, while the dynamic responses are computed with the use of Newmark's time integration scheme. These are many parameters, ranging from those connected with boundary conditions to nanotube geometrical characteristics, velocity, and acceleration of the moving load, and, last but not least, volume fraction and distribution pattern of CNTs. The results indicate that any increase in the volume fraction of CNTs will lead to a decrease in the transient deflection of the structure. It is also observed that maximum displacement occurs with an increase in the load speed, slightly delayed compared to decelerating motion.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.