• Title/Summary/Keyword: Volume of fluid method

Search Result 654, Processing Time 0.027 seconds

Advanced Treatment of Sewage Using Waste Plastic Vessel Media (폐플라스틱용기 미디어를 활용한 오수고도처리)

  • Kim, Jae-Yong;Um, Myeong-Heon;An, Dae-Hyun;Shim, Myeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.58-61
    • /
    • 2006
  • The object of this study was to develop an advanced method for fluid flow and oxygen transmission and increase adhesive property of microorganism to waste plastic vessel that was made of microorganism media. Through lab scale experiments, we found the optimum packed media volume rate and method, and when the optimum condition was applied to pilot plant, we confirmed possibility of advanced treatment. The sewage that was used in the test was the sewage disposal facility established in C and K elementary schools, which utilized waste plastic media oxidation engineering method. Analysis showed that removal efficiency of organic matter, SS, T-N and T-P was very high, that the sewage disposal facility maintained stability of treatment when changeable load of raw sewage flowed in.

Asymmetric flows of non-Newtonian fluids in symmetric stenosed artery

  • Hun Jung;Park, Jong-Wook;Park, Chan-Guk
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.2
    • /
    • pp.101-108
    • /
    • 2004
  • The hemodynamics behavior of the blood flow is influenced by the presence of the arterial stenosis. If the stenosis is present in an artery, normal blood flow is disturbed. In the present study, the characteristics of pulsatile flow in the blood vessel with stenosis are investigated by the finite volume method. For the validation of numerical model, the computation results are compared with the experimental ones of Ojha et al. in the case of 45% stenosis with a trapezoidal profile. Comparisons between the measured and the computed velocity profiles are favorable to our solutions. Finally, the effects of stenosis severity and wall shear stress are discussed in the present computational analysis. It can be seen, where the non-dimensional peak velocity is displayed for all the stenosis models at a given severity of stenosis, that it is exponentially increased. Although the stenosis and the boundary conditions are all symmetric, the asymmetric flow can be detected in the more than 57% stenosis. The instability by a three-dimensional symmetry-breaking leads to the asymmetric separation and the intense swirling motion downstream of the stenosis.

Performance analysis of a scroll compressor considering quasi one-dimensional leakage modeling and heat transfer loss (준 1차원 누설모델링 및 열전달 손실을 고려한 스크롤압축기의 성능해석)

  • Gang, Tae-Gyu;Park, Gyeong-U;Jeong, Yeon-Gu;Park, Hui-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1339-1349
    • /
    • 1997
  • A numerical method of calculating the performance of a scroll compressor for refrigerant R-22 and R-134a is presented in this paper. A series of involute curves are employed for the scroll wrap design and the compression volume is investigated geometrically. The radial leakage flow rate through tip clearance is calculated by the two-dimensional compressible flow. On the basis of the results, quasi one-dimensional leakage modeling can be applied to the performance analysis of a scroll compressor, more effectively. Furthermore, the heat transfer effect between scroll wrap and working fluid in compression chamber is considered for the performance analysis. As the results of this study, the effects of the radial and tangential leakage flow rate and heat transfer on the scroll compressor performance are derived precisely. These results may provide the guideline for the design and development of a real scroll compressor.

Thermo-hydrodynamic investigation into the effects of minichannel configuration on the thermal performance of subcooled flow boiling

  • Amal Igaadi;Rachid El Amraoui;Hicham El Mghari
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.265-274
    • /
    • 2024
  • The current research focuses on the development of a numerical approach to forecast strongly subcooled flow boiling of FC-72 as the refrigerant in various vertical minichannel shapes for high-heat-flux cooling applications. The simulations are carried out using the Volume of Fluid method with the Lee phase change model, which revealed some inherent flaws in multiphase flows that are primarily due to an insufficient interpretation of shearlift force on bubbles and conjugate heat transfer against the walls. A user-defined function (UDF) is used to provide specific information about this noticeable effect. The influence of shape and the inlet mass fluxes on the flow patterns, heat transfer, and pressure drop characteristics are discussed. The computational results are validated with experimental measurements, where excellent agreements are found that prove the efficiency of the present numerical model. The findings demonstrate that the heat transfer coefficient decreases as the mass flux increases and that the constriction design improves the thermal performance by 24.68% and 10.45% compared to the straight and expansion shapes, respectively. The periodic constriction sections ensure good mixing between the core and near-wall layers. In addition, a slight pressure drop penalty versus the thermal transfer benefits for the two configurations proposed is reported.

Flow Range Extension of Light Oil Flowmeter Standard System with Build-Up Technique (Build-Up 기법을 이용한 경질유 표준장치의 측정범위 확장)

  • Lim, Ki-Won;Choi, Jong-Oh
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1139-1146
    • /
    • 2006
  • Light Oil Flow Standard System(LOFSS) in Korea Research Institute of Standards and Science(KRISS) was designed for oil flowmeter calibration. In order to extend the flow range from 120 $m^3/h$ to 200 $m^3/h$, the build-up technique was applied with two positive displacement flowmeters as master flowmeter. The master flowmeters were calibrated against with LOFSS, which has 0.04 % uncertainty of flow quantity determination, then the test flowmeter is calibrated against two master flowmeters. For uncertainty analysis, the repeatability of master flowmeters, the variation of the fluid density and the pipe volume due to temperature change were scrutinized. The contribution of each uncertainty factors to the calibrator and the correlation of each factors were discussed. For investigating the feasibility of uncertainty analysis, a turbine flowmeter as a transfer package was tested with LOFSS and two reference flowmeter. The hypothesis test for both results was coincide with a 95 % significant level. This means that the uncertainty analysis procedure of the calibrator is reasonable and the extension of flow range with master meters was carry out successfully.

Analysis of the ejector for low-pressure evaporative desalination system using solar energy (태양에너지 이용 저압 증발식 해수 담수시스템 이젝터 CFD 해석)

  • Hwang, In-Seon;Joo, Hong-Jin;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.137-143
    • /
    • 2010
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube(throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. In the present study, the multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Two-dimensional geometry was considered with the quadrilateral-mashing scheme. The gas suction rate increases with increasing Motive flow circulating rate.

Numerical investigation of film boiling heat transfer on the horizontal surface in an oscillating system with low frequencies

  • An, Young Seock;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.918-924
    • /
    • 2020
  • Film boiling is of great importance in nuclear safety as it directly influences the integrity of nuclear fuel in case of accidents involving loss of coolant. Recently, nuclear power plant safety under earthquake conditions has received much attention. However, to the best of our knowledge, there are no existing studies reporting film boiling in an oscillating system. Most previous studies for film boiling were performed on stationary systems. In this study, numerical simulations were performed for saturated film boiling of water on a horizontal surface under low frequencies to investigate the effect of system oscillation on film boiling heat transfer. A coupled level-set and volume-of-fluid method was used to track the interface between the vapor and liquid phases. With a fixed oscillation amplitude, overall, heat transfer decreases with oscillation frequency. However, there is a frequency region in which heat transfer remains nearly constant. This lock-on phenomenon occurs when the oscillation frequency is near the natural bubble release frequency. With a fixed oscillation frequency, heat transfer decreases with oscillation amplitude. With a fixed maximum amplitude of the additional gravity, heat transfer is affected little by the combination of oscillation amplitude and frequency.

An Analysis on Volumetric Displacement of Gerotor Hydraulic Motor using Energy Conservation and Torque Equilibrium - Second Report: The Case of a Revolving and Rotating Inner Rotor - (에너지보존과 토크평형을 이용한 제로터 유압모터의 배제용적 해석 - 내부로터 공·자전 경우 -)

  • Kim, S.D.;Kim, D.M.;Ham, Y.B.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.15-24
    • /
    • 2014
  • It is difficult to analytically derive a volumetric displacement formula for a gerotor hydraulic motor due to the complexity of the geometric shape of its gear lobes. This work proposes an analytical method for the volumetric displacement, a relatively easy method based upon two physical concepts: conservation between hydraulic energy and mechanical shaft energy, and torque equilibrium for the rotor's motion. The first research using these concepts was conducted on inner and outer rotors rotating with respect to each rotor axis. This work represents the second report conducted on an inner rotor revolving as a planetary motion on the stationary outer rotor. The formula equations regarding the volumetric displacement and flow rate are derived, and the proposed formula about the volumetric displacement is proven to be the same as another analytical displacement formula: the so-called vane length method. From the formula, volumetric displacement is calculated for an example geometry of the gear lobes. The resultant displacement is confirmed to be the same as the value calculated from the chamber volume method. The proposed analytical formula can be utilized in the analysis and design of gerotor hydraulic motors. Because it is based on torque equilibrium, this formula can provide a better understanding of torque performance, such as torque ripple, in designing a gerotor type motor.

A Comparative Study on the Characteristics of Binary Oxidized Carbon Nanofluids Based DI Water and Ethanol (물-에탄올 기반 이성분 산화탄소나노유체의 특성 비교 연구)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.85-92
    • /
    • 2012
  • A nanofluid is a fluid containing suspended solid particles, with sizes on the order of nanometers. Normally, nanofluids have higher thermal conductivitiest han their base fluids. Therefore, we measured the thermal conductivity and viscosity of oxidized carbon nanofluids based the mixture of distilled water and ethanol (ethanol concentration is 0.2) oxidized carbon nanofluids were made by ultrasonic dispersing oxidized multi-walled carbon nanotubes in the mixture of distilled water and ethanol at the rates of 0.001~ 0.1 vol%. The thermal conductivity and viscosity of oxidized carbon nanofluids were measured by using transient hot-wire method and rotational digital viscometer, respectively. And all of experiments were carried out at the same temperature conditions($10^{\circ}C$, $25^{\circ}C$ and $70^{\circ}C$). As a result, when volume fraction of nanofluids is 0.1 vol%, thermal conductivity was improved 13.6% ($10^{\circ}C$), 15.1% ($25^{\circ}C$), and 17.0% ($70^{\circ}C$), and its viscosity was increased by 36.0% ($10^{\circ}C$), 32.9% ($25^{\circ}C$) and 19.5% ($70^{\circ}C$) than the base fluids.

Numerical Evaluation of charged Liquid Particle′s Behavior in Fluid Flow and Electric Field and The Electric Effect on the Particle Dispersion (유동과 전기장 내에서의 액체입자의 거동과 전기장이 입자의 산란에 미치는 영향에 관한 수치적 연구)

  • Kim, Hyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.570-577
    • /
    • 2002
  • Charged liquid particle's behavior in electric and flow field was simulated to define the effect of electric field on the contact area and its dispersion. For the simulation of flow and electric field finite volume method was applied. To find out the particle's moving path in that field lagrangian equation of motion was solved by Runge-Kutta methods. We assumed that the particle was charged 10% of Rayleigh limit while the particle passing through the electrode and the particle does not have an effect on the electric field. In case of 30[Kv] of voltage charging the particles injected from the central 60% of the nozzle injection area adhere to the grounded moving plate and no dispersion occurred. Increasing the charged voltage to 40[Kv], it brought about the same phenomena as that of 30[Kv] charging except the dispersion. Voltage increasing from 30[Kv] to 40 [Kv] caused higher Coulomb force acts on the particle and it made the particle dispersion.