• Title/Summary/Keyword: Volume model

Search Result 4,949, Processing Time 0.027 seconds

Estimation of Stand Growth and CO2 Removals for Juglans mandshurica Plantations in ChungJu, Chungcheongbuk-do in Korea (충북 충주지역 가래나무의 임목생장량 및 이산화탄소 흡수량 추정)

  • Son, Yeong Mo;Kim, Rae Hyun;Kim, Young Hwan;Lee, Kyeong Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.646-651
    • /
    • 2009
  • In this study, it was intended to prepare a stem volume table (with or without bark) and a stand yield table for Juglans mandshurica, plantations in Chungju, located in Chungcheongbuk-do, Korea. For the calculation of stem volume, we applied Kozak's growth model, which showed the best fitness index (97%). With this model, it was able to prepare the first yield table for Juglans mandshurica in Korea. Site index model, an indicator of forest productivity, was derived by using the Chapman-Richard model, in which the basic stand age was set to 30 years. The resulted site index ranged between 16 and 22. Based on the yield table of Juglans mandshurica resulted from this study, the volume for a 70-year-old stand with a midium site index class was estimated to be $238m^3/ha$, which is $100m^3/ha$ higher than the volume estimated from the yield table of Quercus acutissima. The yield table of oak trees has been used in the estimation of most broadleaf stands in Korea. However, the result of this study indicated that it is necessary to generate a stand yield table for each broadleaf species. The annual $CO_2$ removals of 30-year-old Juglans mandshurica plantations in the ChungJu region was estimated to be $5.84tCO_2/ha$. The stem volume and stand yield table of Juglans mandshurica plantation resulted from this study would provide a good information in decision making for forest management in ChungJu region.

A Prediction of Marine Traffic Volume using Artificial Neural Network and Time Series Analysis (인공신경망과 시계열 분석을 이용한 해상교통량 예측)

  • Yoo, Sang-Lok;Kim, Jong-Su;Jeong, Jung-Sik;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.33-41
    • /
    • 2014
  • Unlike the existing regression analysis, this study anticipated future marine traffic volume using time series analysis and artificial neural network model. Especially, it tried to anticipate future marine traffic volume by applying predictive value through time series analysis on artificial neural network model as an additional input variable. This study used monthly observed values of Incheon port from 1996 to 2013. In order for the verification of the forecasting of the model, value for 2013 is anticipated from the built model with observed values from 1996 to 2012 and a proper model is decided by comparing with the actual observed values. Marine traffic volume of Incheon port showed more traffic than average for May and November by 5.9 % and 4.5 % respectably, and January and August showed less traffic than average by 8.6 % and 4.7 % in 2015. Thus, it is found that Incheon port has difference in monthly traffic volume according to the season. This study can be utilized as a basis to reflect the characteristics of traffic according to the season when investigating marine traffic field observation.

A Image-based 3-D Shape Reconstruction using Pyramidal Volume Intersection (피라미드 볼륨 교차기법을 이용한 영상기반의 3차원 형상 복원)

  • Lee Sang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.127-135
    • /
    • 2006
  • The image-based 3D modeling is the technique of generating a 3D graphic model from images acquired using cameras. It is being researched as an alternative technique for the expensive 3D scanner. In this paper, I propose the image-based 3D modeling system using calibrated camera. The proposed algorithm for rendering 3D model is consisted of three steps, camera calibration, 3D shape reconstruction and 3D surface generation step. In the camera calibration step, I estimate the camera matrix for the image aquisition camera. In the 3D shape reconstruction step, I calculate 3D volume data from silhouette using pyramidal volume intersection. In the 3D surface generation step, the reconstructed volume data is converted to 3D mesh surface. As shown the result, I generated relatively accurate 3D model.

Design of Optimum Volume of Sediment Settling Pond at Highland Agricultural Watershed Using WEPP Model (WEPP 모델을 이용한 고랭지밭 경사도별 침사지 적정용량 산정방법)

  • Hyun, Geun-Woo;Park, Sung-Bin;Park, Jeong-Hee;Geon, Sang-Ho;Choi, Jae-Wan;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.87-95
    • /
    • 2010
  • The optimum volume of sediment settling pond is determined by the maximum rainfall and surface peak rate runoff from crop field. Based on analysis of measured rainfall and runoff data, it was found that rainfall intensity of 2 mm/min would result in peak rate runoff from the agricultural field of study area. Optimum pond volume under various slope scenarios were determined using the WEPP model calibrated with measured flow and sediment data for the study watershed. For the agricultural field with the slope of 7 % and area of $2,600\;m^2$ at the study area, at least $6.4\;m^3$ of sediment settling pond is needed as shown in this study. The results presented in this study could be used as a guide in designing appropriate volume of sediment settling pond at highland agricultural areas because both very detailed field measurement and calibrated WEPP model results are used in the analysis.

Ambient Occlusion Volume Rendering using Multi-Range Statistics (다중 영역 통계량을 이용한 환경-광 가림 볼륨 가시화)

  • Nam, Jinhyun;Kye, Heewon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.3
    • /
    • pp.27-35
    • /
    • 2015
  • This study presents a volume rendering method using ambient occlusion which is one of global illumination methods. By considering the volume density distribution as normal distribution, ambient occlusion can be calculated at real-time speed regardless of modification of opacity transfer function. We calculate and store the averages and standard deviations of densities in a block centered at each voxel in pre-processing time. In rendering process, we determine the illumination value by estimating the nearby opacity. We generalized theoretical model and generated better quality images improving our previous research. In detail, various shapes of transfer function can be used due to the proposed equation model. Moreover, we introduced a multi-range model to give nearer objects more weight. As the result, more realistic volume rendering image can be generated at real-time speed by mixing local and ambient occlusion shading.

A Study on the Sediment Volume Change and Two-dimensional Deposited Characteristics of Pumping-dredged Soil (준설토의 체적변화 및 2차원 퇴적특성에 관한 연구)

  • 김형주;이민선;이용주;김대우
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.155-165
    • /
    • 2003
  • A series of one-dimensional cylinder sedimentation test, seepage consolidation test and two-dimensional deposition model test were conducted to examine the characteristics of deposition and volume change of dredged soils containing the high water content, and these experimental results were compared with the sedimentary conditions of actual dredged-reclaimed fields to obtain the relations of a volume change by settling what is required for design. In addition, the change of water content and the distribution of fine grained soils after sedimentation were investigated. Thus, it was concluded that deposition height increased lineary as substantial soil volume increased, and also the elevation of interface increasea proportionately at both the starting time and the finishing time of virtual self-weight consolidation in one-dimensional sedimentation. Furthermore, the two-dimensional model test results were shown to describe the plain distribution of water content and fine grained silt where dredged soil was deposited by two dimensional flowing, and the water content was distributed to wide range from the minimum water content 30% to maximum 180% according to the passed amount of №200 sieve percentage.

COMPUTATION OF LAMINAR NATURAL CONVECTION OF NANOFLUID USING BUONGIORNO'S NONHOMOGENEOUS MODEL (Buongiorno의 비균질 모델을 사용한 나노유체의 층류 자연대류 해석)

  • Choi, S.K.;Kim, S.O.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.25-34
    • /
    • 2013
  • A numerical study of a laminar natural convection of the CuO-water nanofluid in a square cavity using the Buongiorno's nonhomogeneous model is presented. All the governing equations including the volume fraction equation are discretized on a cell-centered, non-uniform grid employing the finite-volume method with a primitive variable formulation. Calculations are performed over a range of Rayleigh numbers and volume fractions of the nanopartile. From the computed results, it is shown that both the homogeneous and nonhomogeneous models predict the deterioration of the natural convection heat transfer well with an increase of the volume fraction of nanoparticle at the same Rayleigh number, which was observed in the previous experimental studies. It is also shown that the differences in the computed results of the average Nusselt number at the wall between the homogeneous and nonhomogeneous models are very small, and this indicates that the slip mechanism of the Brown diffusion and thermophoresis effects are negligible in the laminar natural convection of the nanofluid. The degradation of the heat transfer with an increase of the volume fraction of the nanoparticle in the natural convection of nanofluid is due to the increase of the viscosity and the decrease of the thermal expansion coefficient and the specific heat. It is clarified in the present study that the previous controversies between the numerical and experimental studies are owing to the different definitions of the Nusselt number.

The Effects of Volume Ratio and Shape on the Formation of Adiabatic Shear Band in WHA (텅스텐 중합금의 부피분율, 입자형상에 따른 단열전단밴드 형성 연구)

  • 이승우;송흥섭;문갑태
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.682-690
    • /
    • 2002
  • The formation of adiabatic shearband in tungsten heavy alloys(WHA) was studied in this investigation. Five prismatic specimens were loaded by high velocity impacts and treated as plane strain problems. To find out the effect of particle's volume ratio, specimens containing 81%, 93% and 97% volume percents of tungsten particles were used. Also the effects of particle's geometry and size on the formation of shearband were studied for 81% volume percent alloys by small size particle model, large size particle model and undulated particle models, and the results were discussed.be used to diagnose the causes of necking and fracture in industrial practice and to investigate whether these defects were caused by material property variation, changes in lubrication, or incorrect press settings. In non-axisymmetric deep drawing, three modes of forming regimes are found: draw, stretch, plane strain. The stretch mode for non-axisymmetric deep drawing could be defined when the major and minor strains are positive. The draw mode could be defined when the major strain is positive and minor strain is negative, and plane strain mode could be defined when the major strain is positive and minor strain is zero. Through experiments the draw mode was shown on the wall and flange are one of a drawn cup, while the plane strain and the stretch mode were on the punch head and the punch corner area respectively, We observed that the punch load of elliptical deep drawing was decreased according to increase of die corner radius and the thickness deformation of minor side was more large than major side.

Experimental and analytical study on RC beam reinforced with SFCB of different fiber volume ratios under flexural loading

  • Lin, Jia-Xiang;Cai, Yong-Jian;Yang, Ze-Ming;Xiao, Shu-Hua;Chen, Zhan-Biao;Li, Li-Juan;Guo, Yong-Chang;Wei, Fei-Fei
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.133-145
    • /
    • 2022
  • Steel fiber composite bar (SFCB) is a novel type of reinforcement, which has good ductility and durability performance. Due to the unique pseudo strain hardening tensile behavior of SFCB, different flexural behavior is expected of SFCB reinforced concrete (SFCB-RC) beams from traditional steel bar reinforced concrete (S-RC) beams and FRP bar reinforced concrete (F-RC) beams. To investigate the flexural behavior of SFCB-RC beam, four points bending tests were carried out and different flexural behaviors between S/F/SFCB-RC beams were discussed. An flexural analytical model of SFCB-RC beams is proposed and proved by the current and existing experimental results. Based on the proposed model, the influence of the fiber volume ratio R of the SFCB on the flexural behavior of SFCB-RC beams is discussed. The results show that the proposed model is effective for all S/F/SFCB-RC flexural members. Fiber volume ratio R is a key parameter affecting the flexural behavior of SFCB-RC. By controlling the fiber volume ratio of SFCB reinforcements, the flexural behavior of the SFCB-RC flexural members such as bearing capacity, bending stiffness, ductility and repairability of SFCB-RC structures can be designed.

Hybrid Model Representation for Progressive Indoor Scene Reconstruction (실내공간의 점진적 복원을 위한 하이브리드 모델 표현)

  • Jung, Jinwoong;Jeon, Junho;Yoo, Daehoon;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.5
    • /
    • pp.37-44
    • /
    • 2015
  • This paper presents a novel 3D model representation, called hybrid model representation, to overcome existing 3D volume-based indoor scene reconstruction mechanism. In indoor 3D scene reconstruction, volume-based model representation can reconstruct detailed 3D model for the narrow scene. However it cannot reconstruct large-scale indoor scene due to its memory consumption. This paper presents a memory efficient plane-hash model representation to enlarge the scalability of the indoor scene reconstruction. Also, the proposed method uses plane-hash model representation to reconstruct large, structural planar objects, and at the same time it uses volume-based model representation to recover small detailed region. Proposed method can be implemented in GPU to accelerate the computation and reconstruct the indoor scene in real-time.