• 제목/요약/키워드: Volume Estimation

검색결과 902건 처리시간 0.021초

Robust Ultrasound Multigate Blood Volume Flow Estimation

  • Zhang, Yi;Li, Jinkai;Liu, Xin;Liu, Dong Chyuan
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.820-832
    • /
    • 2019
  • Estimation of accurate blood volume flow in ultrasound Doppler blood flow spectrograms is extremely important for clinical diagnostic purposes. Blood volume flow measurements require the assessment of both the velocity distribution and the cross-sectional area of the vessel. Unfortunately, the existing volume flow estimation algorithms by ultrasound lack the velocity space distribution information in cross-sections of a vessel and have the problems of low accuracy and poor stability. In this paper, a new robust ultrasound volume flow estimation method based on multigate (RMG) is proposed and the multigate technology provides detail information on the local velocity distribution. In this method, an accurate double iterative flow velocity estimation algorithm (DIV) is used to estimate the mean velocity and it has been tested on in vivo data from carotid. The results from experiments indicate a mean standard deviation of less than 6% in flow velocities when estimated for a range of SNR levels. The RMG method is validated in a custom-designed experimental setup, Doppler phantom and imitation blood flow control system. In vitro experimental results show that the mean error of the RMG algorithm is 4.81%. Low errors in blood volume flow estimation make the prospect of using the RMG algorithm for real-time blood volume flow estimation possible.

3차원 의료영상진단기기를 이용한 가상 전립선 용적 측정 (Measurement of Prostate Phantom Volume Using Three-Dimensional Medical Imaging Modalities)

  • 성열훈;주용현;최보영
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권4호
    • /
    • pp.285-291
    • /
    • 2010
  • Recently, advance on various modalities of diagnosing, prostate volume estimation became possible not only by the existing two-dimension medical images data but also by the three-dimensional medical images data. In this study, magnetic resonance image (MRI), computer tomography (CT) and ultrasound (US) were employed to evaluate prostate phantom volume measurements for estimation, comparison and analysis. For the prostate phantoms aimed at estimating the volume, total of 17 models were developed by using devils-tongue jelly and changing each of the 5ml of capacity from 20ml to 100ml. For the volume estimation through 2D US, the calculation of the diameter with C9-5Mhz transducer was conducted by ellipsoid formula. For the volume estimation through 3D US, the Qlab software (Philips Medical) was used to calculate the volume data estimated by 3D9-3Mhz transducer. Moreover, the images by 16 channels CT and 1.5 Tesla MRI were added by the method of continuous cross-section addition and each of imaginary prostate model's volume was yielded. In the statistical analysis for comparing the availability of volume estimation, the correlation coefficient (r) was more than 0.9 for all indicating that there were highly correlated, and there were not statistically significant difference between each of the correlation coefficient (p=0.001). Therefore, the estimation of prostate phantom volume using three-dimensional modalities of diagnosing was quite closed to the actual estimation.

3D 초음파 영상에서 방광 내 잔뇨량 추정을 위한 새로운 알고리즘 (A New Algorithm to Estimate Urine Volume from 3D Ultrasound Bladder Images)

  • 조태식;이수열;조민형
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권1호
    • /
    • pp.31-38
    • /
    • 2016
  • For the patients with bladder dysfunction, measurement of urine volume inside the bladder is very critical to avoid bladder failure. In measuring urine volume inside a bladder, low-resolution 3D ultrasound images are widely used. However, urine volume estimation from 3D ultrasound images is prone to big errors and inconsistency because of low spatial resolution and low signal-to-noise ratio of ultrasound images. We developed a new robust volume estimation algorithm which is not computationally expensive. We tested the algorithm on a lab-built ultrasound bladder phantom and volunteers. The average error rate of the human bladder volume estimation was 5.9% which was better than the commercial machine.

Accuracy Assessment of Topographic Volume Estimation Using Kompsat-3 and 3-A Stereo Data

  • Oh, Jae-Hong;Lee, Chang-No
    • 한국측량학회지
    • /
    • 제35권4호
    • /
    • pp.261-268
    • /
    • 2017
  • The topographic volume estimation is carried out for the earth work of a construction site and quarry excavation monitoring. The topographic surveying using instruments such as engineering levels, total stations, and GNSS (Global Navigation Satellite Systems) receivers have traditionally been used and the photogrammetric approach using drone systems has recently been introduced. However, these methods cannot be adopted for inaccessible areas where high resolution satellite images can be an alternative. We carried out experiments using Kompsat-3/3A data to estimate topographic volume for a quarry and checked the accuracy. We generated DEMs (Digital Elevation Model) using newly acquired Kompsat-3/3A data and checked the accuracy of the topographic volume estimation by comparing them to a reference DEM generated by timely operating a drone system. The experimental results showed that geometric differences between stereo images significantly lower the quality of the volume estimation. The tested Kompsat-3 data showed one meter level of elevation accuracy with the volume estimation error less than 1% while the tested Kompsat-3A data showed lower results because of the large geometric difference.

선박의 속력을 고려한 해상교통량 평가에 관한 연구 (Estimation of Marine Traffic Volume Considering Ship Speed)

  • 권유민
    • 해양환경안전학회지
    • /
    • 제24권4호
    • /
    • pp.381-388
    • /
    • 2018
  • 본 연구에서는 선박의 속력을 고려한 해상교통량 평가 방법을 제안하였으며, 이를 선박의 속력을 고려하지 않은 기존의 방법과 비교하였다. 평가를 위하여 평택 당진항 10일간의 GICOMS 자료를 본 연구에 적용하였다. 그 결과 제안된 방법으로 평가된 환산교통량은 기존의 평가 방법에 비해 4.41(${\pm}0.99$)배 증가하거나, 0.59(${\pm}0.04$)배 감소하는 것으로 나타났다. 제안된 평가 방법을 적용한 각 시간대별 평균 해상교통혼잡도는 기존의 평가 방법 결과에 비해 1.43(${\pm}0.10$)배 높게 나타났으며, 각 시간대별 최대 해상교통혼잡도는 1.62(${\pm}0.34$)배 높게 나타났다. 해상교통혼잡도 최대 평가 결과인 피크타임 해상교통혼잡도는 선박의 속력 분포로 인하여 기존의 평가 방법과 다르게 평가됨을 확인하였다. 결과적으로 선박의 속력은 실용교통용량 평가 시 중요 값으로 적용되기 때문에 해상교통량을 평가할 때 선박의 속력을 고려하여야 할 것으로 사료된다.

지구통계 기법을 활용한 토양 오염범위 산정 및 불확실성 평가 (Evaluation of Geostatistical Approaches for better Estimation of Polluted Soil Volume with Uncertainty Evaluation)

  • 김호림;김경호;윤성택;황상일;김형돈;이군택;김영주
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권6호
    • /
    • pp.69-81
    • /
    • 2012
  • Diverse geostatistical tools such as kriging have been used to estimate the volume and spatial coverage of contaminated soil needed for remediation. However, many approaches frequently yield estimation errors, due to inherent geostatistical uncertainties. Such errors may yield over- or under-estimation of the amounts of polluted soils, which cause an over-estimation of remediation cost as well as an incomplete clean-up of a contaminated land. Therefore, it is very important to use a better estimation tool considering uncertainties arising from incomplete field investigation (i.e., contamination survey) and mathematical spatial estimation. In the current work, as better estimation tools we propose stochastic simulation approaches which allow the remediation volume to be assessed more accurately along with uncertainty estimation. To test the efficiency of proposed methods, heavy metals (esp., Pb) contaminated soil of a shooting range area was selected. In addition, we suggest a quantitative method to delineate the confident interval of estimated volume (and spatial extent) of polluted soil based on the spatial aspect of uncertainty. The methods proposed in this work can improve a better decision making on soil remediation.

주요 수종별 재적의 상업적 이용율 추정 (Estimation of Merchantable Volume Ratio by Major Species)

  • 손영모;강진택;원현규;전주현
    • 한국산림과학회지
    • /
    • 제105권3호
    • /
    • pp.330-335
    • /
    • 2016
  • 본 연구는 중부지방소나무 등 주요 5개 수종에 대하여 상업적으로 이용가능한 재적율인 조재율을 구하기 위하여 수행되었다. 본 연구에 이용한 자료는 최소 1,300여본 이상의 전국적인 조사자료를 이용하였으며, 적용한 추정식은 임목재적 중 목질부 재적을 나타내는 목질부 재적율 추정식과 목질부 재적에 대한 이용재적을 나타내는 원목이용율 추정식이었으며, 이 두가지 추정식의 곱으로 조재율을 도출하였다. 흉고직경에 의한 목질부 재적율(W)은 $W=\frac{a_1}{1+a_2/D}+\frac{b_1}{1+b_2/D}$의 모형을 이용하였으며, 이 식의 적합도는 수종별로 99% 이상이었고 기타 검정통계량도 식의 적합성을 충분히 설명하고 있었다. 목질부 재적에 대한 원목이용율(M)은 $M=e^{a_1\(\frac{d}{D}\)^{a_2}}-(b_0+b_1D+b_2D^2+b_3D^3)$ 모형을 적용시켜 적합도는 수종별로 96% 이상이었다. 이 두가지 추정식을 이용하여 5개 수종별로 상업적 재적이용율인 조재율을 산정하고 조재율표를 작성하였다. 분석결과, 조재율은 침엽수와 활엽수 임상별로는 거의 차이가 없는 것으로 나타났으나, 기존 침엽수, 활엽수 조재율과의 차이는 있는 것으로 나타났다.

유방에 대한 길이 파라미터를 이용한 3차원 유방 부피의 예측 개선 (Accuracy Improvement of Breast Volume Estimation Using Length Parameters of Breast)

  • 이현영;홍경희
    • 복식문화연구
    • /
    • 제14권5호
    • /
    • pp.840-849
    • /
    • 2006
  • Breast volume has been approximately estimated under the assumption that the shape of breast is a corn. However, women's breast is more like a bulged bag in reality. In this paper, three methods of breast volume estimation were compared to find out the more accurate method. The shape of the breast is assumed as a hemisphere in the first estimation method and a corn in the second one. In the third method, arc along the cross sectional shape of breast was utilized in the calculation. Comparisons among the methods were made using the actual 3D volume measurement of thirty seven women's breast. As results, the third method was the best one for the normal breast type, especially for the lower part of the breast ($R^2=0.74$) which is the crucial design parameter of the brassiere. Assumption of the shape of breast as a corn was reasonably acceptable when the breast is sagged. It was expected that when women wore brassiere, the accuracy of the third method would increase more, since the shape of breast becomes more symmetrical.

  • PDF

장기만연속수수량추정모형의 실용화 연구 -우리나라 중소유역을 대상으로- (A Generalized Model on the Estimation of the Long - term Run - off Volume - with Special Reference to small and Medium Sized Catchment Areas-)

  • 임병현
    • 한국농공학회지
    • /
    • 제32권4호
    • /
    • pp.27-43
    • /
    • 1990
  • This study aimed at developing a generalized model on the estimation of the long - term run - off volume for practical purpose. During the research period of last 3 years( 1986-1988), 3 types of estimation model on the long - term run - off volume(Effective rainfall model, unit hydrograph model and barne's model for dry season) had been developed by the author. In this study, through regressional analysis between determinant factors (bi of effective rainfall model, ai of unit hydrograph model and Wi of barne's model) and catchment characteris- tics(catchment area, distance round the catchment area, massing degree coefficient, river - exte- nsion, river - slope, river - density, infiltration of Watershed) of 11 test case areas by multiple regressional method, a new methodology on the derivation of determinant factors from catchment characteristics in the watershed areas having no hydrological station was developed. Therefore, in the resulting step, estimation equations on run - off volume for practical purpose of which input facor is only rainfall were developed. In the next stage, the derived equations were applied on the Kang - and Namgye - river catchment areas for checking of their goodness. The test results were as follows ; 1. In Kang - river area, average relative estimation errors of 72 hydrographs and of continuous daily run - off volume for 245 days( 1/5/1982 - 31/12) were calculated as 6.09%, 9.58% respectively. 2. In Namgye - river area, average relative estimation errors of 65 hydrographs and of conti- nuous daily run - off volume for 2fl days(5/4/1980-31/12) were 5.68%, 10.5% respectively. In both cases, relative estimation error was averaged as 7.96%, and so, the methodology in this study might be hetter organized than Kaziyama's formula when comparing with the relative error of the latter, 24~54%. However, two case studies cannot be the base materials enough for the full generalization of the model. So, in the future studies, many test case studies of this model should he carries out in the various catchment areas for making its generalization.

  • PDF

Comparison Analysis of Donor Liver Volumes Estimated with 3D Magnetic Resonance and 3D Computed Tomography Image Data

  • Kim, Myeong-Seong;Park, Kyeong-Seok;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • 제19권3호
    • /
    • pp.261-265
    • /
    • 2014
  • Three-dimensional computed tomography is an effective tool to estimate the liver volume of living donors for the live liver transplantation. When additional operation is required, magnetic resonance imaging is conducted to determine the safety of the donor. This study compared the accuracy of magnetic resonance imaging and computed tomography in estimating 3D liver volume of 23 male and 7 female donors who underwent both magnetic resonance imaging and computed tomography tests before the transplantation. The analysis was conducted to see whether the liver's estimated total volumes and the left lobe volumes obtained from 3D-magnetic resonance imaging and 3D-computed tomography were identical. Volumes of the right lobe estimated with 3D-magnetic resonance imaging and 3D-computed tomography were compared with the actual volume of the right lobe harvested in the operating room because the volume of the right lobe is an important determinant in the safety of the donor. The total volume of the liver estimated from 3D-magnetic resonance imaging and 3D-computed tomography differed (1238.1904 units and 1402.364 units respectively). The left lobe volume of the liver estimated with 3D-magnetic resonance imaging and 3D-computed tomography also differed (450.530 units and 554.490 units, respectively). The right lobe volume of the liver estimated with 3D-magnetic resonance imaging and 3D-computed tomography were 787.660 units and 847.545 units, respectively, while the actual average right lobe volume of the harvested liver was 678.636 units. 3D-computed tomography has been widely used to estimate the right lobe volume of the donors' liver. However, 3D-magnetic resonance imaging was also very effective in estimating the volume of the liver. Thus, 3D-magnetic resonance imaging is also expected to become an important tool in determining the safety of the donors before transplantation.