• 제목/요약/키워드: Volume Efficiency

검색결과 2,153건 처리시간 0.031초

Comparative Analysis of 10 MW Superconducting Wind Power Generators with Three-phase and Nine-phase Armature Windings

  • Kim, Taewon;Woo, Sang-Kyun;Sung, Hae-Jin
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권4호
    • /
    • pp.343-347
    • /
    • 2019
  • When referring to weight, volume, and efficiency, a SuperConducting Synchronous Generator (SCSG) is definitely superior to conventional generators as a large-scale wind power generation system. The SCSG is connected to a full power converter that transmits the energy from the SCSG to the power grid. To reduce the current stress and system cost, the SCSG which has nine-phase armature windings with three converters is used. This paper deals with a comparative analysis of 10 MW superconducting wind power generators with three-phase and nine-phase armature windings. The stator windings of SCSGs are of various types. Using the finite element method, SCSGs are analyzed and compared in terms of the weight and volume of SCSGs, the total length of the superconducting wire, harmonics, torque performance, and efficiency. The analyzed results will be effectively utilized to design large-scale superconducting generators for wind power generation systems.

의료기기용 고속 BLDC 전동기의 특성해석 (Characteristics Analysis of high speed BLDC motor for Medical instruments)

  • 서영택;김형길;남상석;김철호;오철수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.9-12
    • /
    • 2003
  • Brushless do motors have been replacing brush type motors in machine tool and robotics applications over the last number of years This Paper deals with the design and application of the slot-less permanent magnet synchronous motor (PMSM). The slot-less PMSM eliminates rotational cogging torque due to permanent magnet preferred positions decreases core loss and thus increases efficiency, provides excellent torque-to-volume and power-to-volume ratios, and has a linear current versus torque relation. The PMSM with slot-less stator is designed and manufactured, which will be used for high speed and high efficiency application such a medical instruments.

  • PDF

Performance Comparison of PM Synchronous and PM Vernier Machines Based on Equal Output Power per Unit Volume

  • Jang, Dae-Kyu;Chang, Jung-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.150-156
    • /
    • 2016
  • This paper compares the performances of permanent-magnet synchronous (PMS) and permanent-magnet vernier (PMV) machines for low-speed and high-torque applications. For comparison with the PMS machines, we consider two types of the PMV machine. The first one has surface-mounted permanent magnets (PMs) on the rotor and the other has PMs inserted on both sides of the stator and rotor. The PMS and PMV machines are designed to meet the condition of equal output power per unit volume. We analyze the magnetic fields of the machines using a two-dimensional finite element analysis (FEA). We then compare their performances in terms of the generated torque characteristics, power factor, loss, and efficiency.

굴곡 및 굴절형 터널 내의 전파 전파의 전송 효율에 관한 연구 (A study on the transmission efficiency of electromagnetic wave propagation in tunnels with bend and fold)

  • 김기래;한경구
    • 전자공학회논문지A
    • /
    • 제33A권12호
    • /
    • pp.25-32
    • /
    • 1996
  • This paper is concenred with a finite volume time domain (FVTD) method for the analyses of transmission efficiency of electromagnetic wave propagation in tunnels with bend and fold. This method is gased on the volume integratio sof the maxwell's equation with respected to arbitrary shaped small polyhedron cells. The advantages of the present mehtod are that the algorithm is very simple since the coordinate system is restricted only to the cartesian, and so the arbitrary shaped boundaries can easily be dealt with since the fields at every center point of the cells are assigned in an average fashion.

  • PDF

비정렬 삼각격자 유한체적법에 의한 비압축성유동 해석 (Finite volume method for incompressible flows with unstructured triangular grids)

  • 김종태;김용모
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.3031-3040
    • /
    • 1995
  • Two-dimensional incompressible Navier-Stokes equations have been solved by the node-centered finite volume method with the unstructured triangular meshes. The pressure-velocity coupling is handled by the artificial compressibility algorithm due to its computational efficiency associated with the hyperbolic nature of the resulting equations. The convective fluxes are obtained by the Roe's flux difference splitting scheme using edge-based connectivities and higher-order differences are achieved by a reconstruction procedure. The time integration is based on an explicit four-stage Runge-Kutta scheme. Numerical procedures with local time stepping and implicit residual smoothing have been implemented to accelerate the convergence for the steady-state solutions. Comparisons with experimental data and other numerical results have proven accuracy and efficiency of the present unstructured approach.

실험계획법과 WAVE 시뮬레이션을 이용한 엔진 작동 변수의 영향도 평가 및 최적화에 대한 연구 (Application of WAVE Modeling in Combustion performance of SI Engines Using DoE Methodology)

  • 정동원;처거;서열러;임옥택
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2922-2927
    • /
    • 2008
  • The test of engine performance using the engine dynamometer needs technical researchers and facilities. A variety of CAE analysis programs and DoE(Design of Experiments) are used to analyze data efficiently instead of tests. The study got data from simulations of WAVE that used to model the SI engine to identify performance of engine. DoE makes it possible to know effectiveness of factors for power, BSFC, volume efficiency and find optimum condition in each factor through minimizing number of experiments. CA50 has effect on power and BSFC as volume efficiency is related with cylinder liner temperature and heat coefficients. The final result in DoE could be identified of consistency above 98% after substituting the data to WAVE.

  • PDF

호기성 그래뉼 슬러지를 이용한 축산폐수의 생물학적 처리에 관한 연구 (Biological Treatment of Livestock Wastewater using Aerobic Granular Sludge )

  • 김현구;안대희
    • 한국환경과학회지
    • /
    • 제32권7호
    • /
    • pp.483-492
    • /
    • 2023
  • In this study, the treatment of livestock wastewater using an aerobic granular sludge based sequencing batch reactor was investigated. The reactor operation was carried out by general injection and split injection methods. The average removal efficiency of organic matter after the adaptation period was 71.5 and 87.4%, respectively. Some untreated organic matter was attributed to recalcitrant organic matter. The average removal efficiency of total nitrogen was 65.6 and 88.4%, respectively. These results indicate that the denitrification reaction by split injection was carried out smoothly. As for the solids, the ratio of aerobic granular sludge/mixed liquor suspended solid can be determined as the main factor of the process operation, and the ratio increased gradually and finally reached 86.0%. Correspondingly, the sludge volume index (SVI) was also improved, reaching 54 mL/g at the end of operation, and it is believed that the application of a short settling time contributed to the improvement of settleability.

A Numerical Study on the Effect of Inlet Guide Vane Angle on the Performance of Francis Hydraulic Turbine

  • Kim Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권7호
    • /
    • pp.750-757
    • /
    • 2005
  • The objective of this study is an understanding of the effect of inlet flow angle on the output power performance of a Francis hydraulic turbine, An optimum induced angle at the inlet of the turbine is one of the most important design parameters to have the best performance of the turbine at a given operating condition, In general. rotating speed of the turbine is varied with the change of water mass flowrate in a volute, The induced angle of the inlet water should be properly adjusted to the operating condition to have maximum energy conversion efficiency of the turbine, In this study. a numerical simulation was conducted to have detail understanding of the flow phenomenon in the flow path and output power of the model Francis turbine. The indicated power produced by the model turbine at a given operating condition was found numerically and compared to the brake power of the turbine measured by experiment at KIER. From comparison of two results, turbine efficiency or energy conversion efficiency of the model turbine was estimated. From the study, it was found that the rotating power of the turbine linearly increased with the rotating speed. It means that the higher volume flow rate supplied. the bigger torque on the turbine shaft generated. The maximum brake efficiency of the turbine is around 46$\%$ at 35 degree of induced angle. The difference between numerical and experimental output of the model turbine is defined as mechanical efficiency. The maximum mechanical efficiency of the turbine is around 93$\%$ at 25$\∼$30 degree of induced angle.

누설집중형 변압기를 이용한 전계결합형 무선전력전송 시스템의 부피저감 최적설계 연구 (Optimal Design of Volume Reduction for Capacitive-coupled Wireless Power Transfer System using Leakage-enhanced Transformer)

  • 최희수;정채호;최성진
    • 전력전자학회논문지
    • /
    • 제22권6호
    • /
    • pp.469-475
    • /
    • 2017
  • Using impedance matching techniques as a way to increase system power transferability in capacitive wireless power transmission has been widely investigated in conventional studies. However, these techniques tend to increase the circuit volume and thus counterbalance the advantage of the simplicity in the energy link structure. In this paper, a compact circuit topology with one leakage-enhanced transformer is proposed in order to minimize the circuit volume for the capacitive power transfer system. This topology achieves a reactive compensation, and the system quality factor value can be reduced by the turn ratio. As a result, this topology not only reduces the overall system volume but also minimizes the voltage stress of the link capacitor. An optimal design guideline for the leakage-enhanced transformer is also presented. The advantages of the proposed scheme over the conventional method in terms of power efficiency and circuit volume are revealed through an analytic comparison. The feasibility of applying the new topology is also verified by conducting 50 W hardware tests.

Optimization of Vane Diffuser in a Mixed-Flow Pump for High Efficiency Design

  • Kim, Jin-Hyuk;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.172-178
    • /
    • 2011
  • This paper presents an optimization procedure for high-efficiency design of a mixed-flow pump. Optimization techniques based on a weighted-average surrogate model are used to optimize a vane diffuser of a mixed-flow pump. Validation of the numerical results is performed through experimental data for head, power and efficiency. Three-level full factorial design is used to generate nine design points within the design space. Three-dimensional Reynoldsaveraged Navier-Stokes equations with the shear stress transport turbulence model are discretized by using finite volume approximation and solved on hexahedral grids to evaluate the efficiency as the objective function. In order to reduce pressure loss in the vane diffuser, two variables defining the straight vane length ratio and the diffusion area ratio are selected as design variables in the present optimization. As the results of the design optimization, the efficiency at the design flow coefficient is improved by 7.05% and the off-design efficiencies are also improved in comparison with the reference design.