• Title/Summary/Keyword: Voltage-balance

Search Result 301, Processing Time 0.03 seconds

DC-Link Voltage Unbalance Compensation of Reactive Power Compensator using Multi-level Inverter (멀티레벨 인버터를 이용한 무효전력 보상장치에서의 DC-Link 전압 불평형 보상)

  • Kim, Hyo-Jin;Jung, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.422-428
    • /
    • 2013
  • Recently, we use a static synchronous compensator(STATCOM) with cascaded H-bride topologies, because it is easy to increase capacity and to reduce total harmonic distortion(THD). When we use equipment for reactive power compensation, dc-link voltage unbalances occur from several reasons although loads are balanced. In the past, switching pattern change of single phase inverter and reference voltage magnitude change of inverter equipped with power sensor have been used for dc-link voltage balance. But previous methods are more complicated and expensive because of additional component costs. Therefore, this paper explains reasons of dc-link voltage unbalance and proposes solution. This solution is complex method that is composed of reference voltage magnitude change of inverter without additional hardware and shifted phase angle of inverter reference voltages change. It proves possibility through 1000[KVA] system simulation.

A Study on Improvement of the Performance of Pulsed AC Ion Bar (1) (바 형태 정전기제거장치의 정전기제거성능 향상을 위한 연구 (1))

  • Lee, Dong Hoon;Choi, Dong Soo;Jung, Yong Chul;Kim, Sang Min
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.34-38
    • /
    • 2014
  • In Display such as LCD, LED, and AMOLED or semiconductor related industries are required to have static ionizer in order to produce reliable goods since the ionizer can create balanced ion that is delivered to producing goods to minimize electrical damages when manufacturing. However, the most general type of ionization is called, "Corona Discharge" that has a slight chances to generate unequal and unstable amount of each +/- ion to the target object. Then, the ionization performance will drastically decrease and end up with quality deterioration problem. In this research, our objective to resolve the current issue via applying "Coupling Condenser" on each counter electrodes of Corona discharging type ionizer. The result is that the ion balance was maintained the satisfied range that is within +/-100V when we changed the duty ratio of the High Voltage of Pulse AC about 40 ~ 70%. In addition, when levelling the High Voltage of Pulse AC, the ion balance holds the range within +20 ~ 0V. Even though we have tested the same experiment for a year, we have seen the range changes roughly ${\pm}50V$.

A Control Method of the Soft-switching Three-Level V냐 (소프트 스위칭되는 3레벨 전압원 인버터의 제어)

  • Song, In-Seog;Lee, Dong-Ho;Lee, Seong-Ryong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1954-1956
    • /
    • 1998
  • The three-level voltage source inverter (VSI) is good topology for high voltage and high power applications where no semiconductor devices are available. However, it has an inherent problem of switching loss and midpoint charge balance. Therefore, this paper presents two ways. The one is to adopt ZCT soft-switching method to the conventional three-level VSI. The another is to be proposed the method of the midpoint charge balance in three-level VSI. To prove the proposed topology, the paper presents a comprehensive evaluation with theoretical analysis, simulation and experimental results.

  • PDF

Hybrid Double Direction Blocking Sub-Module for MMC-HVDC Design and Control

  • Zhang, Jianpo;Cui, Diqiong;Tian, Xincheng;Zhao, Chengyong
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1486-1495
    • /
    • 2019
  • Dealing with the DC link fault poses a technical problem for an HVDC based on a modular multilevel converter. The fault suppressing mechanisms of several sub-module topologies with DC fault current blocking capacity are examined in this paper. An improved half-bridge sub-module topology with double direction control switch is also designed to address the additional power consumption problem, and a sub-module topology called hybrid double direction blocking sub module (HDDBSM) is proposed. The DC fault suppression characteristics and sub-module capacitor voltage balance problem is also analyzed, and a self-startup method is designed according to the number of capacitors. The simulation model in PSCAD/EMTDC is built to verify the self-startup process and the DC link fault suppression features.

Multi-Output LED Driver Integrated with 3-Switch Converter and Passive Current Balance for Portable Applications

  • Song, Sen;Ni, Kai;Chen, Guipeng;Hu, Yihua;Yu, Dongsheng
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.58-67
    • /
    • 2019
  • This study presents a new portable eight-output light emitting diode (LED) driver. The eight output-channels are divided into two equal groups, and their output powers can be controlled individually by three active switches. In addition, a simple capacitor-based passive current balancing circuit (CBC) is employed in each port to guarantee that the currents of the four LEDs are the same. When compared with the conventionally used separate two-output isolated converters, the proposed one uses one less active switch. Moreover, zero-voltage-switching (ZVS) is achieved, which improves the power efficiency of the driver. Finally, a highly compact prototype is built, which can reach an efficiency of 94.6%.

Nonisolated Multichannel LED Current Balancing Scheme Using Coupled Inductor and Series Resonant Converter (결합인덕터와 직렬 공진을 이용한 비절연 다중 LED 전류 평형 기법)

  • Shin, Yooyong;Hong, Daheon;Choi, Byungcho;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.249-255
    • /
    • 2021
  • A novel current balancing technique for multichannel light-emitting diode (LED) that uses a series resonance and coupled inductor is proposed in this paper. The proposed LED driver balances output currents through frequency control and enables zero-voltage switching. The proposed converter utilizes the charge balance condition of the resonant capacitor and the current sharing function of the coupled inductor to achieve whole LED current balancing without an additional controller. The proposed coupled inductor can integrate the current balancing function and the resonant inductor, so the power density can be increased by reducing the number of magnetic devices. A 40 W prototype is built to verify the validity of this LED driver, and the experimental results are successfully obtained.

Switching-Level Operation Analysis of MMC-based Back-to-Back Converter for HVDC Application (HVDC 적용을 위한 MMC 기반 Back-to-Back 컨버터의 스위칭레벨 동작분석)

  • Hong, Jung-Won;Jeong, Jong-Kyou;Yoo, Seong-Hwan;Choi, Jong-Yun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1240-1248
    • /
    • 2013
  • This paper describes a switching-level operation analysis of BTB(Back-To-Back) converter for HVDC(high voltage DC) application based on MMC(modular multi-level converter). A switching-level operation analysis for BTB converter is very important to understand the converter operation in detail and check the voltage and current transients in each components. However, the development of switching-level simulation model for the actual size BTB Converter is very difficult because the MMC normally has more than 150 sub-modules for each arm. So, a switching level simulation model for the 11-level MMC-based BTB converter was developed with PSCAD/EMTDC software, which has 12 sub-modules for the positive arm and another 12 sub-modules for the negative arm. The DC-voltage balance algorithm, the circulating-current reduction algorithm, the harmonic reduction algorithm, and the redundancy operation algorithm were included in this simulation model. The developed simulation model can be utilized to analyze the MMC-based BTB converter for HVDC application in switching level and to develop the protection scheme for the MMC-based BTB converter for HVDC application.

Assistive Circuit for Lowering Minimum Operating Voltage and Balancing Read/Write Margins in an SRAM Array

  • Shin, Changhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.184-188
    • /
    • 2014
  • There is a trade-off between read stability and writability under a full-/half-select condition in static random access memory (SRAM). Another trade-off in the minimum operating voltage between the read and write operation also exists. A new peripheral circuit for SRAM arrays, called a variation sensor, is demonstrated here to balance the read/write margins (i.e., to optimize the read/write trade-off) as well as to lower the minimum operation voltage for both read and write operations. A test chip is fabricated using an industrial 45-nm bulk complementary metal oxide semiconductor (CMOS) process to demonstrate the operation of the variation sensor. With the variation sensor, the word-line voltage is optimized to minimize the trade-off between read stability and writability ($V_{WL,OPT}=1.055V$) as well as to lower the minimum operating voltage for the read and write operations simultaneously ($V_{MIN,READ}=0.58V$, $V_{MIN,WRITE}=0.82V$ for supply voltage $(V_{DD})=1.1V$).

LIGBT with Dual Cathode for Improving Breakdown Characteristics

  • Kang, Ey-Gook;Moon, Seung-Hyun;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.16-19
    • /
    • 2000
  • Power transistors to be used in Power Integrated Circuits(PIC) are required to have low on resistance, fast switching speed, and high breakdown voltage. The lateral IGBTs(LIGBTs)are promising power devices for high voltage PIC applications, because of its superior device characteristics. In this paper, dual cathode LIGBT(DCIGBT) for high voltage is presented. We have verified the effectiveness of high blocking voltage in the new device by using two dimensional devices simulator. We have analyzed the forward blocking characteristics , the latch up performance and turn off characteristics of the proposed structure. Specially, we have focused forward blocking of LIGBT. The forward blocking voltage of conventional LIGBT and the proposed LIGBT are 120V and 165V, respectively. . The forward blocking characteristics of the proposed LIGBT is better than that of the conventional LIGBT. This forward blocking comparison exhibits a 1.5 times improvement in the proposed LIGBT.

  • PDF

High Step-Down Multiple-Output LED Driver with the Current Auto-Balance Characteristic

  • Luo, Quanming;Zhu, Binxin;Lu, Weiguo;Zhou, Luowei
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.519-527
    • /
    • 2012
  • A high step-down multiple-output LED driver is proposed in this paper. Firstly, the derivation of the driver with dual-output is presented and its operation principle and steady state performance are analyzed in detail. Secondly, a high step-down N-channel LED driver is proposed and its current auto-balance characteristic and step-down ratio are analyzed. Finally, an experimental prototype is built and the experimental results are given. The theoretical analysis and experimental results show that the proposed driver has the following virtues: First, if load balancing is achieved, the voltage gain is 1/N that of a Buck driver, where N is the number of channels. Second, each output automatically has an equal output current, without requiring more current close-loop control circuits than a Buck driver. Last, the voltage stresses of the switches and diodes are lower than those of a Buck driver, meaning that lower voltage switches and diodes can be used, and a higher efficiency can be expected.