• Title/Summary/Keyword: Voltage Sag Compensation

Search Result 78, Processing Time 0.025 seconds

Sag & Swell Detection by Phase Voltage Compensation in 3-Phase Unbalanced Grid (3상 불평형 계통에서의 상 전압 보상을 통한 Sag 및 Swell 검출)

  • Kim, Min-Gi;Kim, Jun-Gu;Jung, Yong-Chae;Won, Chun-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.258-259
    • /
    • 2013
  • Load connection or disconnection makes instantaneous sag & swell in 3-phase grid. When unbalance state occurs, between sensed phase voltage and actual phase voltage may have discrepancy. It makes difficult to detect accurate sag & swell, so it is hard to satisfy the standard for switching ESS system to UPS mode. In this paper, we analyzed unbalanced 3-phase voltage, and compensated the actual sag & swell magnitude.

  • PDF

Voltage Dip Compensation Algorithm Using Multi-Level Inverter (멀티레벨 인버터의 순간정전 보상알고리즘에 관한 연구)

  • Yun, Hong-Min;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.133-140
    • /
    • 2013
  • Cascaded H-Bridge multi-level inverters can be implemented through the series connection of single-phase modular power bridges. In recent years, multi-level inverters are becoming increasingly popular for high power applications due to its improved harmonic profile and increased power ratings. This paper presents a control method for balancing the dc-link voltage and ride-through enhancement, a modified pulse width-modulation Compensation algorithm of cascaded H-bridge multi-level inverters. During an under-voltage protection mechanism, causing the system to shut down within a few milliseconds after a power interruption in the main input sources. When a power interruption occurs finish, if the system is a large inertia restarting the load a long time is required. This paper suggests modifications in the control algorithm in order to improve the sag ride-through performance of ac inverter. The new proposed strategy recommends maintaining the DC-link voltage constant at the nominal value during a sag period, experimental results are presented.

A Single-Phase Quasi Z-Source Dynamic Voltage Restorer(DVR) (단상 Quasi Z-소스 동적전압보상기(DVR))

  • Lee, Ki-Taeg;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.327-334
    • /
    • 2010
  • This paper deals with a single-phase dynamic voltage restorer(DVR) with a quasi Z-source topology. The proposed system based on a single-phase quasi Z-source PWM ac-ac converter which have features such as the input voltage and output voltage are sharing ground, and input current operates in continuous current mode(CCM). For the detection of voltage sag-swell, peak voltage detection method is applied. Also, the circuit principles of the proposed system are described. During the 60% severe voltage sag and 30% voltage swell, the proposed system controls the adding or missing voltage and maintains the rated voltage of sinusoidal waveform at the terminals of the critical loads. Finally, PSIM simulation and experimental results are presented to verify the proposed concept and theoretical analysis.

Induction Motor of Effect for Variation Sag, Swell of Harmonic Order (유도전동기 운전 중 Sag 영향에 의한 고조파 차수 변화)

  • Park, In-Deok;Lee, Seung-Hwan;Kim, Si-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.954-955
    • /
    • 2008
  • In this paper, the voltage harmonics are investigated in terms of the voltage sag versus the time constants of electric machinery under the source voltage variation condition. The electric machinery and compensation equipment are established on the proposed design scheme based on voltage quality effect assessment technology. It have been analyzed how the variation of harmonic order, the output current, the DC-Link voltage and the induction motor speed is carried out under the voltage sag and switching frequency variation.

  • PDF

Analysis on Voltage Compensating Effect of DVR using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 DVR의 전압보상 효과분석)

  • Park, Sang-Ho;Choy, Young-Do;Park, Young-Shin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.165-171
    • /
    • 2010
  • There are many researches on Power Quality Device to protect the critical load and power system as the nonlinear load and precision load are adopted into the power system recently. To analyze the voltage compensation of voltage sag and voltage swell by DVR, which is connected to the important load in series, this paper shows PSCAD/EMTDC simulation and its verification by comparing with the actual DVR output of 2MVA. DVR control scheme in this paper is applicable to compensate single-phase, 2-phases or 3-phases voltage sag as well as DVR for distribution system.

Analysis on Current Limiting and Voltage Sag Compensating Characteristics of a SFCL using Magnetic Coupling of Parallel Connected Two Coils (병렬연결된 두 코일의 자기결합을 이용한 초전도 전류제한기의 전류제한 및 전압강하 보상 특성 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.159-163
    • /
    • 2010
  • The superconducting fault current limiter (SFCL) plays a role in compensating the voltage sag of the sound feeder adjacent to the fault feeder as well as the fault current limiting operation of the fault feeder. Especially, the SFCL using magnetic coupling of two coils with parallel connection has different voltage sag compensating and current limiting characteristics due to the winding direction and the inductance ratio of two coils. In this paper, the current limiting and the voltage sag compensating characteristics of a SFCL using magnetic coupling of parallel connected two coils were analyzed. Through the analysis on the experimental results considering the winding direction of two coils, the SFCL designed with the additive polarity winding was shown to have the higher limited fault current than the SFCL designed with the subtractive polarity winding. In addition, it could be confirmed that the higher fault current limitation of the SFCL could be contributed to the higher load voltage sag compensation.

Voltage Sag Compensation using dq Stationary and Synchronous Rotating Frame (dq 정지, 동페 좌표계를 이용한 순간전압강하 보상)

  • Lee, Kyo-Sung;Lee, Yong-Jea;Park, Jung-Gyun;Choi, Hyen-Young;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.973-975
    • /
    • 2002
  • Voltage Sags are the short-duration reductions in rms voltage caused by faults in the electric supply system and the starting of large loads, such as motors. In this paper, we use the dq transformation(dq stationary frame and dq synchronous rotating frame) for series voltage sag compensation algorithm. Analysis, simulation results are presented for voltage sags on a three-phase balanced voltage source.

  • PDF

Instantaneous Voltage Sag Corrector Using Series Compensator in Transfer Power Line Generator (송전선 직렬보상을 이용한 순시전압강하 보상기)

  • Lee, Sang-Hoon;Min, Wan-Ki;Jeon, Byeong-Seok;Lee, Dae-Jong;Hong, Hyun-Mun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.21-25
    • /
    • 2006
  • This paper describes the novel control techniques design of VSC(Voltage Sag Corrector) for the purpose of power line quality enhancement. A fast detecting technique of voltage sag is implemented through the detection of instantaneous value on synchronous rotating do-reference frame. The first order digital filter is added in the detection algorithm to protect the insensitive characteristics against the noise. The relationship between the total detection time and cut-off frequency of the filter is described. The size of the capacitor bank used as the energy storage element is designed from the point of view of input/output energy with circuit analysis. Finally, the validity of the proposed scheme is proven through the simulated results.

Compensating Characteristics of Voltage Sag Compensator Utilizing Single-Phase Matrix Converter

  • Yamamoto, Kichiro;Ikeda, Keisuke;Iimori, Kenichi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.77-82
    • /
    • 2013
  • By using simulation, compensating characteristics of a voltage sag compensator utilizing single-phase matrix converter is examined. System configuration is described and mathematical model of single-phase matrix converter is derived by using the state space averaging method. In addition, the single-phase matrix converter is stabilized by phase-lead compensation. Finally, compensating characteristics of the compensator is investigated for 500 W R-L load and it is demonstrated that the compensator can operate correctly for loads for the range of power factor 0.6 (lagging) - 0.8 (leading) and for up to 50% voltage sag.

A Study on the Voltage Sags and Compensation of Large Industrial Distribution System using EMTDC (EMTDC를 이용한 대형 산업체 수전설비의 전압저감해석과 보상에 관한 연구)

  • Song, Bin-Tae;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1106-1110
    • /
    • 1998
  • Voltage Sags, different from electric outages, are important to industrial reliability because modern process controls are often sensitive to voltage sag, the designer and operator should recognize sag characteristics of the electric system not only to protect malfunction of equipment but also to make best choices between reliability and equipment cost. The voltage sags and compensation countermeasures of large md industrial distribution systems have been simulated using EMTDC. The causes of voltage sags occurred in the system are discussed in detail and several countermeasures including the transfer of large induction motor from normal power source to backup source are recommended in order to enhance the ride-through characteristics of equipments.

  • PDF