• Title/Summary/Keyword: Voltage Measurement

Search Result 2,032, Processing Time 0.034 seconds

3-Phase RMS Voltage Measurement Method of Virtual Frequence using Instantaneous Power Component Concept (순시전력 합성 개념을 이용한 가상주파수 3상 실효전압 계측기법)

  • Park, Seong-Mi;Yang, Ji-Hoon;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.251-257
    • /
    • 2019
  • This paper proposes a new measurement method using virtual power concept to measure the effective value of 3-phase voltage with variable frequency. The conventional effective value measurement method uses a method of integrating data sampled during one or half cycle of the power voltage and averaging it. In this method, since the effective voltage is calculated every cycle, a time delay occurs in the measured effective voltage and it is s a problem to measure the effective value of a device whose frequency varies from time to time, such as a generator. The proposed 3-phase voltage rms measurement method has an advantage that it can measure accurate voltage RMS value regardless of measurement frequency variation. In particular, there is an advantage in that it is possible to measure a 3-phase effective voltage rather than an average value of the effective voltage of each phase in a 3-phase unbalance voltage. In addition, the validity of the proposed method is verified by using the Psim simulation tool and the experimental results are analyzed by applying the proposed measurement algorithm to the actual three phase synchronous generator voltage measurement experiment.

A Development and Performance Test of Voltage Measurement Accuracy Assessment System for Distribution Equipment (배전기기 전압계측 정밀도 평가시스템 개발 및 성능시험)

  • Cho, Jin-Tae;Kim, Ju-Yong;Lee, Hak-Ju;Kim, Jae-Han
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.83-89
    • /
    • 2013
  • Power distribution system has been changed from radial system to closed loop or mesh system due to connection of distributed generation growth. Data from distribution equipments which are installed at distribution line is required to be accurate for the performance of DMS(Distribution Management System). This paper analyzes the voltage measurement data from distribution equipment. However, the results of the analysis are confirmed to have some errors in voltage measurement data from distribution equipment. These errors come from aging of voltage sensor in distribution equipment and inaccurate data transfer to FRTU(feeder remote terminal unit) through the controller. The main problem is that the voltage measurement data of distribution equipment can not be assessed after it's first installation at the distribution line. The voltage measurement accuracy assessment system is to assess the voltage measurement data from distribution equipment on hot-line. This study had a field test to verify the performance of system.

Experimental Analysis on Temperature Compensation of Capacitive Voltage Divider for a Pulsed High Voltage Measurement (고전압 펄스신호 측정용 분압기의 온도보상에 관한 실험)

  • Jang, S.D.;Son, Y.G.;Kwon, S.J.;Oh, J.S.;Cho, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1530-1533
    • /
    • 2005
  • Total 12 units of high power klystron-modulator systems as microwave source is under operation for 2.5-GeV electron linear accelerator in Pohang Light Source(PLS) linac. RF power and beam power of klystron are precisely measured for the effective control of electron beam. A precise measurement and measurement equipment with good response characteristics are required for this. Input power of klystron is calculated from the applied voltage and the current on its cathode. Tiny measurement error severely effects RF output power value of klystron. Therefore, special care is needed to measure precise beam voltage. Capacitive voltage divider(CVD) unit is intended for the measurement of beam voltage of 400 kV generated from the pulsed klystron-modulator system. Main parameter to determine the standard capacitance in the high arm of CVD is dielectric constant of insulation oil. Therefore CVD should be designed to have a minimum capacitance variation due to voltage, frequency and temperature in the measurement range. This paper will discuss the analysis of capacitive voltage divider for a pulsed high-voltage measurement, and the empirical relations between capacitance and oil temperature variation.

  • PDF

Analysis Technique of Risk Voltage around Grounding Electrode by New Touch and Step Voltage Measurement Methods (새로운 접촉 및 보폭전압 측정법에 의한 접지전극 주위의 위험전압 분석기법)

  • Gil, Hyoung-Jun;Kim, Hyang-Kon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.6
    • /
    • pp.81-86
    • /
    • 2012
  • This paper describes the analysis technique of risk voltage around grounding electrode by new touch and step voltage measurement methods. We have analyzed three techniques for risk voltage measurement, such as footprint-electrode method, test-probe method, and simulated-personnel method. We have selected test-probe method considering applicability of site. In order to reduce error related to the location of the auxiliary electrode, we propose a new approach to perform risk voltage measurement with minimum errors and short auxiliary electrode distances. Field tests were carried out at a grounding grid. It can be concluded that the proposed method will be satisfactory for risk voltage measurement.

Development for Measurement Range Extension Technique of AC High Voltage Source using Parallel Plates Electrode and Electric Field Sensor (평행판 전극과 전기장 센서를 이용한 교류 고전압 발생원의 측정범위 확장기술 개발)

  • Kang, Jeon-Hong;Ryu, Jae-Cheon;Lee, Sang-Hwa;Kim, Kyu-Tae;Kim, Myung-Soo;Han, Sang-Ok;Jung, Jae-Kap
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.9
    • /
    • pp.446-451
    • /
    • 2006
  • The output voltage value of AC high voltage source has been usually measured by employing the high voltage divider of inductive or capacitive type. In the study, we have developed a new method for measuring the output voltage up to 60kV using parallel plates electrode and electric field sensor, which are constructed by home-made. Unlikely the conventional method using a high voltage divider, this developed method makes it possible to extend the range of output voltage from known low voltage measurement to high voltage measurement. From the linearity measured between electric field and applied voltage in the output voltage range of 1kV-30kV, the output voltage value up to 60kV can be obtained by the electric field measurement using the electric field sensor. The output voltage value obtained using the method is consistent with that obtained using high voltage divider within corresponding uncertainties.

Voltage Measurement Accuracy Assessment System for Distribution Equipment of Smart Distribution Network

  • Cho, Jintae;Kwon, Seong-chul;Kim, Jae-Han;Won, Jong-Nam;Cho, Seong-Soo;Kim, Juyong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1328-1334
    • /
    • 2015
  • A new system for evaluating the voltage management errors of distribution equipment is presented in this paper. The main concept of the new system is to use real distribution live-line voltage to evaluate and correct the voltage measurement data from distribution equipment. This new approach is suitable for a new Distribution Management System (DMS) which has been developed for a distribution power system due to the connection of distributed generation growth. The data from distribution equipment that is installed at distribution lines must be accurate for the performance of the DMS. The proposed system is expected to provide a solution for voltage measurement accuracy assessment for the reliable and efficient operation of the DMS. An experimental study on actual distribution equipment verifies that this voltage measurement accuracy assessment system can assess and calibrate the voltage measurement data from distribution equipment installed at the distribution line.

Capacitive Voltage Divide for a Pulsed High-Voltage Measurement (펄스형 고전압 측정용 용량성 분압기)

  • Jang Sung-Duck;Son Yoon-Kyoo;Kwon Sei-Jin;Oh Jong-Seok;Cho Moo-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.2
    • /
    • pp.63-68
    • /
    • 2005
  • Total 12 units of high power klystron-modulator systems as microwave source are under operation for 2.5 GeV electron linear accelerator in Pohang Light Source (PLS) linac. The klystron-modulator system has an important role for the stable operation to improve an availability statistics of overall system performance of klystron-modulator system. RF power and beam power of klystron are precisely measured for the effective control of electron beam. A precise measurement and measurement equipment with good response characteristics are demanded for this. Input power of klystron is calculated from the applied voltage and the current on its cathode. Tiny measurement error severely effects RF output power value of klystron. Therefore, special care is needed to measure precise beam voltage. Capacitive voltage divider (CVD), which divides input voltage as capacitance ratio, is intended for the measurement of a beam voltage of 400 kV generated from the klystron-modulator system. Main parameter to determine standard capacitance in the high arm of CVD is dielectric constant of insulation oil. Therefore CVD should be designed to have a minimum capacitance variation due to voltage, frequency and temperature in the measurement range. This paper will be present and discuss the design concept and analysis of capacitive voltage divider for a pulsed high-voltage measurement, and the empirical relations between capacitance effects and oil temperature variation.

Study on Measurement Error Reduction Technique when Measuring Touch and Step Voltage of Grounding System (접지시스템의 접촉전압 및 보폭전압 측정오차 감소 기법에 관한 연구)

  • Kim, Dong-Woo;Lim, Young-Bea;Lee, Sang-Ick;Choi, Myeong-Il;Moon, Hyun-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.188-195
    • /
    • 2015
  • This paper presents measurement error reduction technique of touch and step voltage of grounding system based on numerical analysis. When measuring touch and step voltage of grounding system, auxiliary current probes should be located at suitable places. However, the auxiliary probes can not be located at suitable places in such cases as there are buildings and pavements. Therefore, in this paper, we provided measurement error reduction technique of touch and step voltage of grounding system according to the positions of auxiliary probes and angle between auxiliary probes. Also, measurement error analyses of touch and step voltage of grounding system have been conducted using more than one current probe. Based on these analyses, recommended positions of auxiliary probes within allowable measurement errors were presented.

Improvement of Measuring Capacity of the DC High-voltage Divider for a National High-voltage Standard (국가 고전압 표준용 직류고전압 분압기의 측정능력 향상)

  • Lee, Sang-Hwa;Jang, Seok-Myeong;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1622-1625
    • /
    • 2014
  • The main measurement uncertainty factors in DC high-voltage dividers for a national high-voltage standard are the measurement uncertainty of low-voltage arm and the stability of a high-voltage supply. In this study, the uncertainties by the two factors are greatly improved. As a result the measurement uncertainty for the DC high-voltage divider is reduced from $16{\times}10^{-6}(k=2)$ to $8{\times}10^{-6}(k=2)$ which is at international level.

Compensation of Resistance Variation due to Temperature in Voltage Measurement System (온도에 따른 저항 변화를 보상한 전압 측정 방법)

  • Min, Sang-Jun;Kim, Jin-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1174-1177
    • /
    • 2012
  • In voltage measurement by using voltage divider with series resistors, error is generated caused by the variation of resistance. In order to reduce these errors, the hardware cost tends to increase in the previous works. In the proposed method, three resistors are used for the voltage divider of which the organization is adjusted by using switches. Three voltages are measured and the ratio of resistance is calculated based on the measured voltages. Since the resistance ratio is calculated by measuring voltages and additional hardware cost is minimal, the voltage can be measured with high accuracy and low cost. Experimental results show that the mean absolute error is 12.1 mV when the input voltage ranges from 5 V to 50 V.