• Title/Summary/Keyword: Volatile release

Search Result 69, Processing Time 0.022 seconds

Interactions between Entodinium caudatum and an amino acid-fermenting bacterial consortium: fermentation characteristics and protozoal population in vitro

  • Tansol Park;Zhongtang Yu
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.387-400
    • /
    • 2023
  • Ruminal protozoa, especially entodiniomorphs, engulf other members of the rumen microbiome in large numbers; and they release oligopeptides and amino acids, which can be fermented to ammonia and volatile fatty acids (VFAs) by amino acid-fermenting bacteria (AAFB). Studies using defaunated (protozoa-free) sheep have demonstrated that ruminal protozoa considerably increase intraruminal nitrogen recycling but decrease nitrogen utilization efficiency in ruminants. However, direct interactions between ruminal protozoa and AAFB have not been demonstrated because of their inability to establish axenic cultures of any ruminal protozoan. Thus, this study was performed to evaluate the interaction between Entodinium caudatum, which is the most predominant rumen ciliate species, and an AAFB consortium in terms of feed degradation and ammonia production along with the microbial population shift of select bacterial species (Prevotella ruminicola, Clostridium aminophilum, and Peptostreptococcus anaerobius). From an Ent. caudatum culture that had been maintained by daily feeding and transfers every 3 or 4 days, the bacteria and methanogens loosely associated with Ent. caudatum cells were removed by filtration and washing. An AAFB consortium was established by repeated transfers and enrichment with casamino acids as the sole substrate. The cultures of Ent. caudatum alone (Ec) and AAFB alone (AAFB) and the co-culture of Ent. caudatum and AAFB (Ec + AAFB) were set up in three replicates and incubated at 39℃ for 72 h. The digestibility of dry matter (DM) and fiber (NDF), VFA profiles, ammonia concentrations, pH, and microscopic counts of Ent. caudatum were compared among the three cultures. The co-culture of AAFB and Ent. caudatum enhanced DM degradation, VFA production, and Ent. caudatum cell counts; conversely, it decreased acetate: propionate ratio although the total bacterial abundance was similar between Ec and the Ec + AAFB co-culture after 24 h incubation. The ammonia production and relative abundance of C. aminophilum and P. anaerobius did not differ between AAFB alone and the Ec + AAFB co-culture. Our results indicate that Ent. caudatum and AAFB could have a mutualistic interaction that benefited each other, but their interactions were complex and might not increase ammoniagenesis. Further research should examine how such interactions affect the population dynamics of AAFB.

Effects of Fermented Total Mixed Ration and Cracked Cottonseed on Milk Yield and Milk Composition in Dairy Cows

  • Wongnen, C.;Wachirapakorn, C.;Patipan, C.;Panpong, D.;Kongweha, K.;Namsaen, N.;Gunun, P.;Yuangklang, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.12
    • /
    • pp.1625-1632
    • /
    • 2009
  • Four lactating Holstein Friesian crossbred cows, with an average initial weight of 450 kg, 48${\pm}$12 days in milk and initial milk yield of 18 kg/h/d, were randomly arranged according to a 2${\times}$2 factorial arrangement in a 4${\times}$4 in Latin square design with 21-d period to investigate the effects of type of total mixed ration (TMR) and type of whole cottonseed (WCS) on intake, digestibility and milk production. The dietary treatments were i) TMR and WCS supplementation at 0.5 kg/h/d, ii) TMR and cracked WCS (cWCS) supplementation at 0.5 kg/h/d, iii) fermented TMR (FTMR) and WCS supplementation at 0.5 kg/h/d, and iv) FTMR and cWCS supplementation at 0.5 kg/h/d. Voluntary feed intake was 15.9, 15.2, 15.4 and 15.6 kg DM/d in dietary treatment 1, 2, 3 and 4, respectively. Digestibility of DM, OM, CP, EE, NDF and ADF were not significantly different among dietary treatments. Ruminal pH, $NH_{3}-N$ and volatile fatty acids in the rumen were also not significantly different among type of TMR or type of WCS. Blood urea-N concentration was not significantly different among dietary treatments. Ruminal bacteria population tended to increase but ruminal protozoa population tended to decrease with supplementation of cWCS, but they were not affected by FTMR. Milk yield and 3.5% FCM were not statistically different among treatments (16.6, 16.2, 17.0, 16.3 kg/d and 18.0, 18.6, 19.9 and 19.0 kg/d, respectively). Milk composition was not significantly different among dietary treatments. However, unsaturated fatty acids in milk fat in cows fed FTMR were lower (p<0.05) than in cows fed TMR. In conclusion, fermentation is a conceivable method to improve the quality of TMR for long-time storage and the cracking method is suitable to release the fat from cottonseed for enhancing fatty acid deposition in milk. Thus, the combination of FTMR and cWCS supplementation would be an alternative strategy to improve performance of lactating cows.

Thermal Behavior and Kinetics of Coal Blends during Devolatilization (탈휘발화 과정에서 혼탄의 반응률과 열적 거동에 관한 연구)

  • Ryu, Kwang-Il;Kim, Ryang-Gyoon;Li, Dong-Fang;Wu, Ze-Lin;Jeon, Chung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.121-126
    • /
    • 2013
  • The objective of this research is to predict the TG curve of blends of bituminous coal and sub-bituminous coal during devolatilization. TSL (Thermal Shock Large) TGA was used for Experiments, and Coats-redfern method was used for reaction order calculation. Based on reaction order, sum method was verified to be suitable for a single coal, then, prediction and comparison of TG curve of coal blends was conducted using both of WSM (Weight Sum Method) and MWSM (Modified Weight Sum Method), where the latter was developed in this research. The presented experiment results and WSM & MWSM were showed to be reasonable using linear least square method. MWSM performed more accurately than WSM for the case that TG curve had different slopes and the case that sharp weight loss happened due to release of volatile matter. The results showed that it's possible to predict the thermal behavior of coal blends during devolatilization based on the thermal behavior of single coals.

Quality Changes of Chicken Breast Meat by Slow-Released ClO2 Gas Gel-Pack during Storage (서방형 이산화염소 가스 젤팩을 이용한 닭가슴육 저장 중 품질 변화)

  • Lee, Kyung-Haeng;Yoon, Ye-Ji;Kwon, Hye-Won;Lee, Bom;Kim, Hong-Gil
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.1
    • /
    • pp.127-134
    • /
    • 2018
  • To prolong the shelf-life of chicken breast meat, samples were treated with gel packs containing slow-released chlorine dioxide ($ClO_2$) gas at 7~15 ppm for eight days at $4^{\circ}C$. The microbial, physicochemical properties and sensory evaluation of the treated samples were investigated. The total number of bacteria in the control increased during storage and showed 6.78 log CFU/g on the 8th day of storage, but $ClO_2$ gas treatments showed 6.24~6.58 log CFU/g at the same time. The initial pH of chicken breast meat was 6.00 and gradually increased during storage. And $ClO_2$ gas treatments did not show any significant difference from the control during storage period, but maintained a generally lower pH than that of the control. The lightness, redness, and yellowness during storage were not significantly different between the control and the 7~10 ppm $ClO_2$ gas treatments. However, as the storage period was increased, the redness of 15 ppm $ClO_2$ gas treatment was reduced. The cooking loss and shear force were not different between the control and $ClO_2$ gas treatments during the storage period. Volatile basic nitrogen (VBN) increased in the control from the 6th day of storage and 23.80 mg% in the 8th day of storage. However, VBN of $ClO_2$ treatments showed lower than that of the control. In the change of sensory evaluation during storage, 10 ppm $ClO_2$ treatment showed the highest preference in odor, appearance and overall acceptance during storage period.

Identification of Priority Pollutants in Shihwa-Banwol Techno Valley Area for Management of Environmental Health (시화.반월산업단지 인근지역의 환경보건 관리를 위한 우선관리대상 오염물질 선정에 관한 연구)

  • Kim, Jung-Kon;Park, Yoon-Suk;Paek, Do-Myung;Choi, Kyung-Ho
    • Journal of Environmental Policy
    • /
    • v.6 no.3
    • /
    • pp.33-56
    • /
    • 2007
  • Use of chemicals has greatly increased along with development of human civilization. Concerns about potential effects of chemicals on human health and environment have also grown accordingly. Due to the enormous number of chemicals being used, however, it is neither practical nor feasible to regulate all the chemicals. Therefore, it is necessary to identify chemicals that deserve more immediate attention, based on the effects on receptors to be protected. This study was initiated by the need for developing management policies for Shihwa-Banwol Techno Valley and its vicinities of korea, where complaints and concerns on environmental contamination have been raised for long time. This study to identifies major chemicals that deserve most immediate attention in environmental health management in this area. For this purpose, the study employed CHEMS-1(Chemical Hazard Evaluation for Management Strategies), and used chemical data from Toxics Release Inventory(TRI) and environmental contamination data from the environmental pollution monitoring network. Top priority pollutants identified in Shihwa-Banwol Techno Valley area were metals and volatile organic compounds, such as dichloromethane, trichloroethylene, diazinon, tetrachloroethylene, chromium compounds, tin compounds, chloroacetic acid, ethyl acetate, and zinc compounds, in an order of decreasing importance. An evaluation of physicochemical properties of the priority chemicals and the environmental pollution monitoring network database in Shihwa-Banwol Techno Valley suggested that the media that are of potential concern would be the atmosphere and aquatic environment.

  • PDF

Assessment of three European fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment

  • Luzzi, L.;Barani, T.;Boer, B.;Cognini, L.;Nevo, A. Del;Lainet, M.;Lemehov, S.;Magni, A.;Marelle, V.;Michel, B.;Pizzocri, D.;Schubert, A.;Uffelen, P. Van;Bertolus, M.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3367-3378
    • /
    • 2021
  • The design phase and safety assessment of Generation IV liquid metal-cooled fast reactors calls for the improvement of fuel pin performance codes, in particular the enhancement of their predictive capabilities towards uranium-plutonium mixed oxide fuels and stainless-steel cladding under irradiation in fast reactor environments. To this end, the current capabilities of fuel performance codes must be critically assessed against experimental data from available irradiation experiments. This work is devoted to the assessment of three European fuel performance codes, namely GERMINAL, MACROS and TRANSURANUS, against the irradiation of two fuel pins selected from the SUPERFACT-1 experimental campaign. The pins are characterized by a low enrichment (~ 2 wt.%) of minor actinides (neptunium and americium) in the fuel, and by plutonium content and cladding material in line with design choices envisaged for liquid metal-cooled Generation IV reactor fuels. The predictions of the codes are compared to several experimental measurements, allowing the identification of the current code capabilities in predicting fuel restructuring, cladding deformation, redistribution of actinides and volatile fission products. The integral assessment against experimental data is complemented by a code-to-code benchmark focused on the evolution of quantities of engineering interest over time. The benchmark analysis points out the differences in the code predictions of fuel central temperature, fuel-cladding gap width, cladding outer radius, pin internal pressure and fission gas release and suggests potential modelling development paths towards an improved description of the fuel pin behaviour in fast reactor irradiation conditions.

Comparison of Fermentation Characteristics of Italian Ryegrass (Lolium multiflorum Lam.) and Guineagrass (Panicum maximum Jacq.) during the Early Stage of Ensiling

  • Shao, Tao;Zhang, Z.X.;Shimojo, M.;Wang, T.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1727-1734
    • /
    • 2005
  • The fermentation characteristics and mono- and di-saccharides compositions during the early stage of ensiling were studied with a temperate grass, Italian ryegrass (Lolium multiflorum Lam.) and a tropical grass, guineagrass (Panicum maximum Jacq.). The laboratory silos were kept in the room set at 25$^{\circ}C$, and then were opened on 0.5, 1, 2, 3, 5 and 7 days (14 days in Italian ryegrass) after ensiling, respectively. The Italian ryegrass silage showed a fast and large pH decrease caused by a fast and large production of lactic acid during the first 5 days of ensiling and succeeded to achieve lactic acid type fermentation; high lactic acid/acetic acid and lactic acid content at the end of ensiling (14 days), low values of pH (3.74), acetic acid, ethanol and ammonia-N/total nitrogen, none or only small amounts of Butyric acid, valeric acid and propionic acid. The guineagrass silage showed a slow decrease in pH and a slow increase in lactic acid content during the full ensiling period, causing a high final pH value, low contents of lactic acid, acetic acid, total volatile fatty acids and total organic acids. In Italian ryegrass silage, mono- and di-saccharides compositions decreased largely within the initial 0.5 day (12 h) of ensiling. Sucrose disappeared rapidly within the initial 0.5 day of ensiling, but fructose and glucose contents showed an initial rise by the activity of enzymes in plant tissues, and then decreased gradually. On the other hand, the contents of monoand di-saccharides in guineagrass showed the largest decreases due mainly to plant respiration within the initial 0.5 day of ensiling, and no initial rises in fructose and glucose contents during the early stage of ensiling because of the absence of fructans which are hydrolyzed into fructose and glucose in temperate grasses. In both silages, the rate of reduction in mono- and di-saccharides compositions within the initial 5 days of ensiling was ranked in the order of glucose>fructose>sucrose, suggesting that glucose and fructose might be more favorably utilized than sucrose by microorganisms and glucose is the first fermentation substrate. It was concluded that the silage made from Italian ryegrass with high moisture content had a good fermentation quality owing to the dominance of lactic acid bacteria and active lactic acid fermentation during the initial stage of ensiling. These results can be explained by rapid plant sap liberation and the high activity of plant enzyme hydrolyzed fructans into fructose and glucose within the initial 2 days of ensiling, which stimulate the homofermentative lactic acid bacteria growth. In ensiling a temperate grass, the physical characteristics may ensure the rapid onset of fermentation phase, which results from the smaller losses of water-soluble carbohydrates during the initial stage of ensiling and providing sufficient water-soluble carbohydrates for lactic acid bacteria. The silage made from guineagrass with intermediate dry matter and high initial mono- and di-saccharides content was stable silage. This could be explained by the higher incorporation of air during the very early stage of ensiling and the restriction of cell breakdown and juice release due to the properties of a tropical grass with coarse porosity and stemmy structures. These physical characteristics delayed the onset of lactic acid bacteria fermentation phase by extending the phases of respiration and aerobic microorganisms activity, causing the higher loss of water-soluble carbohydrates and the shortage of lactic acid bacteria fermentation substrates.

An Effective Block of Radioactive Gases for the Storage During the Synthesis of Radiopharmaceutical (방사성의약품 합성에서 발생하는 방사성기체의 효율적 차단)

  • Chi, Yong Gi;Kim, Dong Il;Kim, Si Hwal;Won, Moon Hee;Choe, Seong-Uk;Choi, Choon Ki;Seok, Jae Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.126-130
    • /
    • 2012
  • Purpose : Methode an effective block was investigated to deal with volatile radioactive gas, short lived radioactive waste generated as a result of the routinely produced radiopharmaceuticals FDG (2-deoxy-2-[$^{18}F$]fluoro-D-glucose) and compound with $^{11}C$. Materials and Methods : All components of the radiation stack monitoring and data management system for continuous radioactive gas detection in the air extract system purchase from fixed noble gas monitor of Berthold company. TEDLAR gas sampling bags purchase from the Dongbanghitech company. TEDLAR gas sampling bags (volume: 10 L) connected via paraflex or PTFE tubing and Teflon 3 way stopcock. When installing TEDLAR gas sampling bags in Hot cell on the inside and not radioactive gas concentrations were compared. According to whether the Hot cell inside a activated carbon filter installed, compare the difference in concentration of the radioactive gas $^{18}F$. Comparison of radiation emission concentration difference of module a FASTlab and TRACElab. Results : Activated carbon filter are installed in the Hot cell, a measure of the concentration of radioactive gas was 8 $Bq/m^3$. Without activated carbone filter in the hot cell was 300 $Bq/m^3$. Tedlar bag prior to installation of the radioactive gases a measure of the concentration was 3,500 $Bq/m^3$, $^{11}C$ synthesis of the measured concentration was 27,000 $Bq/m^3$. After installed a Tedlar bag and a measure concentration of the radioactive gases was 300 $Bq/m^3$ and $^{11}C$ synthesis was 1,000$Bq/m^3$. Conclusion : $^{11}C$ radioactive gas that was ejected out of the Hot cell, with the use of a Tedlar gas sampling bag stored inside. A compound of 11C is not absorbed onto activated carbon filter. But can block the release out by storing in a Tedlar gas sampling bag. We was able to reduce the radiation exposure of the worker by efficient radiation protection.

  • PDF

Study on the Consequence Effect Analysis & Process Hazard Review at Gas Release from Hydrogen Fluoride Storage Tank (최근 불산 저장탱크에서의 가스 누출시 공정위험 및 결과영향 분석)

  • Ko, JaeSun
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.449-461
    • /
    • 2013
  • As the hydrofluoric acid leak in Gumi-si, Gyeongsangbuk-do or hydrochloric acid leak in Ulsan, Gyeongsangnam-do demonstrated, chemical related accidents are mostly caused by large amounts of volatile toxic substances leaking due to the damages of storage tank or pipe lines of transporter. Safety assessment is the most important concern because such toxic material accidents cause human and material damages to the environment and atmosphere of the surrounding area. Therefore, in this study, a hydrofluoric acid leaked from a storage tank was selected as the study example to simulate the leaked substance diffusing into the atmosphere and result analysis was performed through the numerical Analysis and diffusion simulation of ALOHA(Areal Location of Hazardous Atmospheres). the results of a qualitative evaluation of HAZOP (Hazard Operability)was looked at to find that the flange leak, operation delay due to leakage of the valve and the hose, and toxic gas leak were danger factors. Possibility of fire from temperature, pressure and corrosion, nitrogen supply overpressure and toxic leak from internal corrosion of tank or pipe joints were also found to be high. ALOHA resulting effects were a little different depending on the input data of Dense Gas Model, however, the wind direction and speed, rather than atmospheric stability, played bigger role. Higher wind speed affected the diffusion of contaminant. In term of the diffusion concentration, both liquid and gas leaks resulted in almost the same $LC_{50}$ and ALOHA AEGL-3(Acute Exposure Guidline Level) values. Each scenarios showed almost identical results in ALOHA model. Therefore, a buffer distance of toxic gas can be determined by comparing the numerical analysis and the diffusion concentration to the IDLH(Immediately Dangerous to Life and Health). Such study will help perform the risk assessment of toxic leak more efficiently and be utilized in establishing community emergency response system properly.