DOI QR코드

DOI QR Code

Assessment of three European fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment

  • Luzzi, L. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Barani, T. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Boer, B. (Studiecentrum voor Kernenergie (SCK.CEN)) ;
  • Cognini, L. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Nevo, A. Del (ENEA, FSN-ING-SIS, CR Brasimone) ;
  • Lainet, M. (Commissariat a l'Energie Atomique et aux Energies Alternatives, CEA DEC/SESC) ;
  • Lemehov, S. (Studiecentrum voor Kernenergie (SCK.CEN)) ;
  • Magni, A. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Marelle, V. (Commissariat a l'Energie Atomique et aux Energies Alternatives, CEA DEC/SESC) ;
  • Michel, B. (Commissariat a l'Energie Atomique et aux Energies Alternatives, CEA DEC/SESC) ;
  • Pizzocri, D. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Schubert, A. (European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security) ;
  • Uffelen, P. Van (European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security) ;
  • Bertolus, M. (Commissariat a l'Energie Atomique et aux Energies Alternatives, CEA DEC/SESC)
  • Received : 2020.12.11
  • Accepted : 2021.04.09
  • Published : 2021.10.25

Abstract

The design phase and safety assessment of Generation IV liquid metal-cooled fast reactors calls for the improvement of fuel pin performance codes, in particular the enhancement of their predictive capabilities towards uranium-plutonium mixed oxide fuels and stainless-steel cladding under irradiation in fast reactor environments. To this end, the current capabilities of fuel performance codes must be critically assessed against experimental data from available irradiation experiments. This work is devoted to the assessment of three European fuel performance codes, namely GERMINAL, MACROS and TRANSURANUS, against the irradiation of two fuel pins selected from the SUPERFACT-1 experimental campaign. The pins are characterized by a low enrichment (~ 2 wt.%) of minor actinides (neptunium and americium) in the fuel, and by plutonium content and cladding material in line with design choices envisaged for liquid metal-cooled Generation IV reactor fuels. The predictions of the codes are compared to several experimental measurements, allowing the identification of the current code capabilities in predicting fuel restructuring, cladding deformation, redistribution of actinides and volatile fission products. The integral assessment against experimental data is complemented by a code-to-code benchmark focused on the evolution of quantities of engineering interest over time. The benchmark analysis points out the differences in the code predictions of fuel central temperature, fuel-cladding gap width, cladding outer radius, pin internal pressure and fission gas release and suggests potential modelling development paths towards an improved description of the fuel pin behaviour in fast reactor irradiation conditions.

Keywords

Acknowledgement

This work has received funding from the Euratom research and training programme 2014-2018 through the INSPYRE Project under grant agreement No 754329.

References

  1. GIF (Generation IV International Forum), GIF R&D Outlook for Generation IV Nuclear Energy Systems - 2018 Update, 2018.
  2. GIF (Generation IV International Forum), Annual Report 2019, 2019.
  3. T. Beck, V. Blanc, J.M. Escleine, D. Haubensack, M. Pelletier, M. Phelip, B. Perrin, C. Venard, Conceptual design of ASTRID fuel sub-assemblies, Nucl. Eng. Des. 315 (2017) 51-60. https://doi.org/10.1016/j.nucengdes.2017.02.027
  4. ESFR-SMART, ESFR-SMART European H2020 Project [Online]. Available, http://esfr-smart.eu/, 2017.
  5. G. Grasso, C. Petrovich, D. Mattioli, C. Artioli, P. Sciora, D. Gugiu, G. Bandini, E. Bubelis, K. Mikityuk, The core design of ALFRED, a demonstrator for the European lead-cooled reactors, Nucl. Eng. Des. 278 (2014) 287-301. https://doi.org/10.1016/j.nucengdes.2014.07.032
  6. H.A. Abderrahim, D. De Bruyn, M. Dierckx, R. Fernandez, L. Popescu, M. Schyns, A. Stankovskiy, G. Van Den Eynde, D. Vandeplassche, MYRRHA accelerator driven system programme: recent progress and perspectives, Nucl. Power Eng. 2 (2019) 29-41.
  7. L. Luzzi, A. Cammi, V. Di Marcello, S. Lorenzi, D. Pizzocri, P. Van Uffelen, Application of the TRANSURANUS code for the fuel pin design process of the ALFRED reactor, Nucl. Eng. Des. 277 (2014) 173-187. https://doi.org/10.1016/j.nucengdes.2014.06.032
  8. EERA-JPNM, INSPYRE - Investigations Supporting MOX Fuel Licensing in ESNII Prototype Reactors [Online]. Available, http://www.eera-jpnm.eu/inspyre/, 2017.
  9. M. Lainet, B. Michel, J.C. Dumas, M. Pelletier, I. Ramiere, GERMINAL, a fuel performance code of the PLEIADES platform to simulate the in-pile behaviour of mixed oxide fuel pins for sodium-cooled fast reactors, J. Nucl. Mater. 516 (2019) 30-53. https://doi.org/10.1016/j.jnucmat.2018.12.030
  10. B. Michel, I. Ramiere, I. Viallard, C. Introini, M. Lainet, N. Chauvin, V. Marelle, A. Boulore, T. Helfer, R. Masson, J. Sercombe, J.C. Dumas, L. Noirot, S. Bernaud, Two fuel performance codes of the PLEIADES platform: ALCYONE and GERMINAL, in: J. Wang, X. Li, C. Allison, J. Hohorst (Eds.), Nuclear Power Plant Design and Analysis Codes - Development, Validation and Application, Woodhead Publishing Series in Energy, Elsevier, 2021, pp. 207-233. Chap. 9.
  11. S. Lemehov, F. Jutier, Y. Parthoens, B. Vos, S. Van Den Berghe, M. Verwerft, N. Nakae, MACROS benchmark calculations and analysis of fission gas release in MOX with high content of plutonium, Prog. Nucl. Energy 57 (2012) 117-124. https://doi.org/10.1016/j.pnucene.2011.12.010
  12. European Commission, TRANSURANUS Handbook, Joint Research Centre, Karlsruhe, Germany, 2020.
  13. A. Magni, A. Del Nevo, L. Luzzi, D. Rozzia, M. Adorni, A. Schubert, P. Van Uffelen, The TRANSURANUS fuel performance code, in: J. Wang, X. Li, C. Allison, J. Hohorst (Eds.), Nuclear Power Plant Design and Analysis Codes - Development, Validation and Application, Woodhead Publishing Series in Energy, Elsevier, 2021, pp. 161-205. Chap. 8.
  14. J.-F. Babelot, N. Chauvin, Joint CEA/JRC Synthesis Report of the Experiment SUPERFACT 1, Report JRC-ITU-TN-99/03, 1999.
  15. H.A. Abderrahim, P. Baeten, A. Sneyers, M. Schyns, P. Schuurmans, A. Kochetkov, G. Van Den Eynde, J.-L. Biarrotte, Partitioning and transmutation contribution of MYRRHA to an EU strategy for HLW management and main achievements of MYRRHA related FP7 and H2020 projects: MYRTE, MARISA, MAXSIMA, SEARCH, MAX, FREYA, ARCAS, Nucl. Sci. Technol. 33 (2020) 1-8.
  16. C. Prunier, F. Boussard, L. Koch, M. Coquerelle, Some specific aspects of homogeneous Am and Np based fuels transmutation through the outcomes of the SUPERFACT experiment in Phenix fast reactor, in: Global'93 Int. Conf, September 1993, pp. 12-17. Seattle, Washington, USA.
  17. C.T. Walker, G. Nicolaou, Transmutation of neptunium and americium in a fast neutron flux: EPMA results and KORIGEN predictions for the SUPERFACT fuels, J. Nucl. Mater. 218 (2) (1995) 129-138. https://doi.org/10.1016/0022-3115(94)00649-0
  18. L. Luzzi, T. Barani, A. Magni, D. Pizzocri, A. Schubert, P. Van Uffelen, M. Bertolus, V. Marelle, B. Michel, B. Boer, S. Lemehov, A. Del Nevo, Internal report describing the irradiation experiments selected for the assessment of fuel performance codes, INSPYRE Report R7.1 (2019).
  19. K. Lassmann, Uranus - a computer programme for the thermal and mechanical analysis of the fuel rods in a nuclear reactor, Nucl. Eng. Des. 45 (1978) 325-342. https://doi.org/10.1016/0029-5493(78)90225-X
  20. Y. Philipponneau, Thermal conductivity of (U, Pu)O2-x mixed oxide fuel, J. Nucl. Mater. 188 (C) (1992) 194-197. https://doi.org/10.1016/0022-3115(92)90470-6
  21. H. Matzke, Gas release mechanisms in UO2 - a critical review, Radiat. Eff. 53 (1980) 219-242. https://doi.org/10.1080/00337578008207118
  22. K. Lassmann, H. Benk, Numerical algorithms for intragranular fission gas release, J. Nucl. Mater. 280 (2) (2000) 127-135. https://doi.org/10.1016/S0022-3115(00)00044-1
  23. P. Van Uffelen, G. Pastore, V. Di Marcello, L. Luzzi, Multiscale modelling for the fission gas behaviour in the TRANSURANUS Code, Nucl. Eng. Technol. 43 (6) (2011) 477-488. https://doi.org/10.5516/NET.2011.43.6.477
  24. T. Barani, E. Bruschi, D. Pizzocri, G. Pastore, P. Van Uffelen, R.L. Williamson, L. Luzzi, Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS, J. Nucl. Mater. 486 (2017) 96-110. https://doi.org/10.1016/j.jnucmat.2016.10.051
  25. M. Charles, M. Bruet, Gap Conductance in a Fuel Rod: Modelling of the FURET and CONTACT Results, CEA, Centre d'etudes nucl eaires de Grenoble, Grenoble, France, 1984.
  26. V. Di Marcello, V. Rondinella, A. Schubert, J. van de Laar, P. Van Uffelen, Modelling actinide redistribution in mixed oxide fuel for sodium fast reactors, Prog. Nucl. Eng. 72 (2014) 83-90. https://doi.org/10.1016/j.pnucene.2013.10.008
  27. K. Lassmann, The oxired model for redistribution of oxygen in nonstoichiometric uranium-plutonium oxides, J. Nucl. Mater. 150 (1) (1987) 10-16. https://doi.org/10.1016/0022-3115(87)90088-2
  28. W. Dienst, I. Muelle-Lyda, H. Zimmermann, Swelling, densification and creep of oxide and carbide fuels under irradiation, in: Int. Conf. On Fast Breeder Reactor Performance, 5-8 March 1979, Monterey, California, USA, 1979.
  29. D. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, Technical Information Center, Office of Public Affairs, Energy Research and Development Administration, 1976.
  30. C. Ronchi, C. Sari, Swelling analysis of highly rated MX-type LMFBR fuels; I. Restructuring and porosity behaviour, J. Nucl. Mater. 58 (1975) 140-152. https://doi.org/10.1016/0022-3115(75)90100-2
  31. T. Preusser, K. Lassmann, Current status of the transient integral fuel element performance code URANUS, in: SMiRT 7, August 1983, pp. 22-26. Chicago, USA.
  32. I. Mueller-Lyda, D. Freund, Referenzdaten zum thermischen und mechanischen Verhalten von hochdichtem Mischoxidbrennstoff, Primar Bericht 01/01/04 P43 B, Kernforschungszentrum Karlsruhe, Germany, 1980.
  33. H. Tobbe, Das Brennstabrechenprogramm IAMBUS zur Auslegung von Schellbruter Brennst aben, Interatom - Technischer Bericht 75 (1975), 65.
  34. T. Barani, D. Pizzocri, F. Cappia, L. Luzzi, G. Pastore, P. Van Uffelen, Modeling high burnup structure in oxide fuels for application to fuel performance codes. Part I: high burnup structure formation, J. Nucl. Mater. 539 (2020) 152296. https://doi.org/10.1016/j.jnucmat.2020.152296
  35. M. Tourasse, M. Boidron, B. Pasquet, Fission product behaviour in Phenix fuel pins at high burnup, J. Nucl. Mater. 188 (1992) 49-57. https://doi.org/10.1016/0022-3115(92)90453-R
  36. F. Cappia, B.D. Miller, J.A. Aguiar, L. He, D.J. Murray, B.J. Frickey, J.D. Stanek, J.M. Harp, Electron microscopy characterization of fast reactor MOX Joint Oxyde-Gaine (JOG), J. Nucl. Mater. 531 (2020), 151964. https://doi.org/10.1016/j.jnucmat.2019.151964
  37. K. Maeda, T. Asaga, Change of fuel-to-cladding gap width with the burn-up in FBR MOX fuel irradiated to high burn-up, J. Nucl. Mater. 327 (2004) 1-10. https://doi.org/10.1016/j.jnucmat.2004.01.003
  38. K. Samuelsson, J.C. Dumas, B. Sundman, M. Lainet, An improved method to evaluate the 'Joint Oxyde-Gaine' formation in (U,Pu)O2 irradiated fuels using the GERMINAL V2 code coupled to Calphad thermodynamic computations, EPJ Nucl. Sci. Technol. 6 (2020) 47. https://doi.org/10.1051/epjn/2020008
  39. Euratom, ESNII+ - Preparing ESNII for HORIZON 2020 [Online]. Available, https://cordis.europa.eu/project/id/605172/, 2013.
  40. V. Sobolev, S. Lemehov, N. Messaoudi, P. Van Uffelen, H.A. Abderrahim, Modelling the behaviour of oxide fuels containing minor actinides with urania, thoria and zirconia matrices in an accelerator-driven system, J. Nucl. Mater. 319 (2003) 131-141. https://doi.org/10.1016/S0022-3115(03)00145-4
  41. S.E. Lemehov, K. Govers, M. Verwerft, Modelling non-standard mixed oxide fuels with the mechanistic code MACROS: Neutronic and heterogeneity effects, in: IAEA-TECDOC-1416, 2003.
  42. S. Lemehov, V. Sobolev, M. Verwerft, H.A. Abderrahim, Comparative studies of different target designs for minor actinides transmutation, in: GLOBAL 2005 Int. Conf., October 2005, pp. 9-13. Tsukuba, Ibaraki, Japan.
  43. S.E. Lemehov, M. Verwerft, V. Sobolev, Thermomechanical modeling of prototypic targets containing high concentrations of minor actinides, in: Fuels and Materials for Transmutation, OECD/NEA, 2005. NEA No. 5419.
  44. M. Verwerft, S. Lemehov, M. Weber, L. Vermeeren, P. Gouat, V. Kuzminov, V. Sobolev, Y. Parthoens, B. Vos, S. Van Den Berghe, H. Segura, P. Blainpain, J. Somers, G. Toury, J. McGinley, D. Staicu, A. Schubert, P. Van Uffelen, D. Haas, OMICO oxide fuels: microstructure and composition variations final report, External Report SCK.CEN-ER- 42 (2007).
  45. S.E. Lemehov, V.P. Sobolev, M. Verwerft, Predicting thermo-mechanical behaviour of high minor actinide content composite oxide fuel in a dedicated transmutation facility, J. Nucl. Mater. 416 (1-2) (2011) 179-191. https://doi.org/10.1016/j.jnucmat.2010.11.100
  46. S. Lemehov, V. Sobolev, P. Van Uffelen, Modelling thermal conductivity and self-irradiation effects in mixed oxide fuels, J. Nucl. Mater. 320 (1-2) (2003) 66-76. https://doi.org/10.1016/S0022-3115(03)00172-7
  47. S. Lemehov, V. Sobolev, R. Thetford, Prognosis of thermomechanical behaviour of cercer and cermet fuels in EFIT-400 transmuter, in: Int. Workshop on Technology and Components of Accelerator Driven Systems, March 2010, pp. 15-17. Karlsruhe, Germany.
  48. K. Govers, D. Terentyev, M. Hou, S. Lemehov, "Molecular dynamics study of mixed oxide fuels : issues and perspectives", in: 43rd Plenary Meeting of the European Working Group - Hot Laboratories and Remote Handling, 2005. Petten, The Netherlands.
  49. K. Govers, S. Lemehov, M. Verwerft, M. Hou, Interatomic potentials for atomicscale simulations of UO2, in: Enlarged Halden Programme Group Meeting - 737 Proceedings of the Fuels & Materials Sessions, vol. 2, Halden, Norway, 2007.
  50. K. Govers, S. Lemehov, M. Hou, M. Verwerft, Comparison of interatomic potentials for UO2. Part I: static calculations, J. Nucl. Mater. 366 (1-2) (2007) 161-177. https://doi.org/10.1016/j.jnucmat.2006.12.070
  51. K. Govers, S. Lemehov, M. Hou, M. Verwerft, Molecular dynamics simulation of helium and oxygen diffusion in UO2±x, J. Nucl. Mater. 395 (1-3) (2009) 131-139. https://doi.org/10.1016/j.jnucmat.2009.10.043
  52. K. Govers, S. Lemehov, M. Verwerft, In-pile Xe diffusion coefficient in UO2 determined from the modeling of intragranular bubble growth and destruction under irradiation, J. Nucl. Mater. 374 (3) (2008) 461-472. https://doi.org/10.1016/j.jnucmat.2007.10.005
  53. R. Delville, R&D programme for the fuel qualification of the research fast reactor MYRRHA, in: IAEA-TECDOC-CD-1689, 2011.
  54. S. Lemehov, Modeling Fuel Fragmentation and Particle Size Distribution under Normal Operation and Accidental Conditions, Mol, Belgium, 2016.
  55. S. Lemehov, MYRRHA MOX Thermo-Physical Properties: Cracked Fuel Mechanics and Axial Thermal Expansion, Mol, Belgium, 2018.
  56. V. Di Marcello, A. Schubert, J. Van De Laar, P. Van Uffelen, Extension of the TRANSURANUS plutonium redistribution model for fast reactor performance analysis, Nucl. Eng. Des. 248 (2012) 149-155. https://doi.org/10.1016/j.nucengdes.2012.03.037
  57. M. Bober, C. Sari, G. Schumacher, Redistribution of plutonium and uranium in mixed (U, Pu) oxide fuel materials in a thermal gradient, J. Nucl. Mater. 39 (3) (1971) 265-284. https://doi.org/10.1016/0022-3115(71)90146-2
  58. C.F. Clement, M.W. Finnis, Plutonium redistribution in mixed oxide (U, Pu)O2 nuclear fuel elements, J. Nucl. Mater. 75 (1) (1978) 193-200. https://doi.org/10.1016/0022-3115(78)90044-2
  59. P. Konarski, J. Sercombe, C. Riglet-Martial, L. Noirot, I. Zacharie-Aubrun, K. Hanifi, M. Fregon ese, P. Chantrenne, 3D simulation of a power ramp including fuel thermochemistry and oxygen thermodiffusion, J. Nucl. Mater. 519 (2019) 104-120. https://doi.org/10.1016/j.jnucmat.2019.03.021
  60. P. Chakraborty, C. Gueneau, A. Chartier, Development of a complete thermo-kinetic description of cations in the mixed oxide of uranium and plutonium, in: NuFuel-MMSNF 2019 Workshop, 4-7 November 2019, PSI, Villigen, Switzerland, 2019.
  61. M. Kato, K. Maeda, T. Ozawa, M. Kashimura, Y. Kihara, Physical properties and irradiation behavior analysis of Np- and Am-Bearing MOX Fuels, J. Nucl. Sci. Technol. 48 (4) (2011) 646-653. https://doi.org/10.3327/jnst.48.646
  62. R. Parrish, A. Aitkaliyeva, A review of microstructural features in fast reactor mixed oxide fuels, J. Nucl. Mater. 510 (2018) 644-660. https://doi.org/10.1016/j.jnucmat.2018.05.076
  63. D. Pizzocri, F. Cappia, L. Luzzi, G. Pastore, V.V. Rondinella, P. Van Uffelen, A semi-empirical model for the formation and depletion of the high burnup structure in UO2, J. Nucl. Mater. 487 (2017).
  64. F. Cappia, D. Pizzocri, A. Schubert, P. Van Uffelen, G. Paperini, D. Pellottiero, R. Macian-Juan, V.V. Rondinella, Critical assessment of the pore size distribution in the rim region of high burnup UO2 fuels, J. Nucl. Mater. 480 (2016) 138-149. https://doi.org/10.1016/j.jnucmat.2016.08.010
  65. J. Noirot, L. Desgranges, J. Lamontagne, Detailed characterization of high burnup structures in oxide fuels, J. Nucl. Mater. 372 (2-3) (2008) 318-339. https://doi.org/10.1016/j.jnucmat.2007.04.037
  66. V.V. Rondinella, T. Wiss, The high burn-up structure in nuclear fuel, Mater. Today 13 (12) (2010) 24-32. https://doi.org/10.1016/S1369-7021(10)70221-2
  67. A. Gallais-During, F. Delage, S. Bejaoui, S. Lemehov, J. Somers, D. Freis, W. Maschek, S. Van Til, E. D'Agata, C. Sabathier, Outcomes of the PELGRIMM project on Am-bearing fuel in pelletized and spherepac forms, J. Nucl. Mater. 512 (2018) 214-226. https://doi.org/10.1016/j.jnucmat.2018.10.016
  68. M. Temmar, B. Michel, I. Ramiere, N. Favrie, Multi-physics modelling of the pellet-to-cladding gap closure phenomenon for SFR fuel performance codes, J. Nucl. Mater. 529 (2020), 151909. https://doi.org/10.1016/j.jnucmat.2019.151909
  69. K. Lassmann, F. Hohlefeld, The revised URGAP model to describe the gap conductance between fuel and cladding, Nucl. Eng. Des. 103 (2) (1987) 215-221. https://doi.org/10.1016/0029-5493(87)90275-5
  70. C.F. Clement, The movement of lenticular pores in UO2 nuclear fuel elements, J. Nucl. Mater. 68 (1) (1977) 63-68. https://doi.org/10.1016/0022-3115(77)90217-3
  71. C. Ronchi, C. Sari, Properties of lenticular pores in UO2, (U,Pu)O2 and PuO2, J. Nucl. Mater. 50 (1) (1974) 91-97. https://doi.org/10.1016/0022-3115(74)90064-6
  72. T.C. Chawla, D.L. Graff, R.C. Borg, G.L. Bordner, D.P. Weber, D. Miller, Thermophysical properties of mixed oxide fuel and stainless steel type 316 for use in transition phase analysis, Nucl. Eng. Des. 67 (1) (1981) 57-74. https://doi.org/10.1016/0029-5493(81)90155-2
  73. G. Pastore, L. Luzzi, V. Di Marcello, P. Van Uffelen, Physics-based modelling of fission gas swelling and release in UO2 applied to integral fuel rod analysis, Nucl. Eng. Des. 256 (2013) 75-86. https://doi.org/10.1016/j.nucengdes.2012.12.002
  74. A. Magni, T. Barani, L. Luzzi, D. Pizzocri, A. Schubert, P. Van Uffelen, A. Del Nevo, Modelling and assessment of thermal conductivity and melting behaviour of MOX fuel for fast reactor applications, J. Nucl. Mater. 541 (2020) 152410. https://doi.org/10.1016/j.jnucmat.2020.152410
  75. P. Garcia, A. Miard, Availability of Setup for Mechanical Measurements on UO2 at CEA/DEC, INSPYRE Milestone MS8, 2019.
  76. P. Martin, G. Jouan, L. Medyk, E. Nilly, Availability of the Micro and Nano Indentation Devices at CEA/DMRC, INSPYRE Milestone MS10, 2019.
  77. D. Pizzocri, G. Pastore, T. Barani, A. Magni, L. Luzzi, P. Van Uffelen, S.A. Pitts, A. Alfonsi, J.D. Hales, A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools, J. Nucl. Mater. 502 (2018) 323-330. https://doi.org/10.1016/j.jnucmat.2018.02.024
  78. A. Cechet, S. Altieri, T. Barani, L. Cognini, S. Lorenzi, A. Magni, D. Pizzocri, L. Luzzi, A new burn-up module for application in fuel performance calculations targeting the helium production rate in (U,Pu)O2 for fast reactors, Nucl. Eng. Technol. (2020) available online, in press.
  79. D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX: a new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater. 532 (2020) 152042. https://doi.org/10.1016/j.jnucmat.2020.152042
  80. G. Wallez, P.E. Raison, A.L. Smith, N. Clavier, N. Dacheux, High-temperature behavior of dicesium molybdate Cs2MoO4: implications for fast neutron reactors, J. Solid State Chem. 215 (2014) 225-230. https://doi.org/10.1016/j.jssc.2014.04.003
  81. A.L. Smith, G. Kauric, L. van Eijck, K. Goubitz, G. Wallez, J.C. Griveau, E. Colineau, N. Clavier, R.J.M. Konings, Structural and thermodynamic study of dicesium molybdate Cs2Mo2O7: implications for fast neutron reactors, J. Solid State Chem. 253 (2017) 89-102. May. https://doi.org/10.1016/j.jssc.2017.05.032
  82. T.R. Pavlov, F. Kremer, R. Dubourg, A. Schubert, P. Van Uffelen, Towards a More Detailed Mesoscale Fission Product Analysis in Fuel Performance Codes: a Coupling of the TRANSURANUS and MFPR-F Codes, TopFuel2018 - Reactor Fuel Performance, September 30 - October 4 2018, Prague, Czech Republic.
  83. EERA-JPNM, GEMMA European H2020 Project [Online]. Available, http://www.eera-jpnm.eu/gemma/, 2017.
  84. EERA-JPNM, EERA-JPNM website [Online]. Available, http://www.eera-jpnm.eu/, 2017.
  85. IAEA, Fuel Materials for Fast Reactors [Online]. Available, https://www.iaea.org/projects/crp/t12031, 2019.
  86. NEA, Primary Radiation Damage in Materials, vol. 9, Report NEA/NSC/DOC, 2015.

Cited by

  1. Overview on Lead-Cooled Fast Reactor Design and Related Technologies Development in ENEA vol.14, pp.16, 2021, https://doi.org/10.3390/en14165157
  2. Analysis of fabrication and crack-induced porosity migration in mixed oxide fuels for sodium fast reactors by the finite element method vol.558, 2022, https://doi.org/10.1016/j.jnucmat.2021.153341