DOI QR코드

DOI QR Code

Prediction of ballooning and burst for nuclear fuel cladding with anisotropic creep modeling during Loss of Coolant Accident (LOCA)

  • Kim, Jinsu (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Yoon, Jeong Whan (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Hyochan (ATF Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Lee, Sung-Uk (ATF Technology Development Division, Korea Atomic Energy Research Institute)
  • Received : 2021.03.04
  • Accepted : 2021.04.15
  • Published : 2021.10.25

Abstract

In this study, a multi-physics modeling method was developed to analyze a nuclear fuel rod's thermo-mechanical behavior especially for high temperature anisotropic creep deformation during ballooning and burst occurring in Loss of Coolant Accident (LOCA). Based on transient heat transfer and nonlinear mechanical analysis, the present work newly incorporated the nuclear fuel rod's special characteristics which include gap heat transfer, temperature and burnup dependent material properties, and especially for high temperature creep with material anisotropy. The proposed method was tested through various benchmark analyses and showed good agreements with analytical solutions. From the validation study with a cladding burst experiment which postulates the LOCA scenario, it was shown that the present development could predict the ballooning and burst behaviors accurately and showed the capability to predict anisotropic creep behavior during the LOCA. Moreover, in order to verify the anisotropic creep methodology proposed in this study, the comparison between modeling and experiment was made with isotropic material assumption. It was found that the present methodology with anisotropic creep could predict ballooning and burst more accurately and showed more realistic behavior of the cladding.

Keywords

Acknowledgement

This work has been carried out under the Nuclear R&D Program supported by the Ministry of Science and ICT (NRF-2017M2A8A4015024).

References

  1. W. Wen, L. Capolungo, C.N. Tome, Mechanism-based modeling of solute strengthening: application to thermal creep in Zr alloy, Int. J. Plast. 106 (2018) 88-106. https://doi.org/10.1016/j.ijplas.2018.03.003
  2. G.S. Was, D. Petti, S. Ukai, S. Zinkle, Materials for future nuclear energy systems, J. Nucl. Mater. 527 (2019), 151837. https://doi.org/10.1016/j.jnucmat.2019.151837
  3. P. Van Uffelen, J. Hales, W. Li, G. Rossiter, R. Williamson, A review of fuel performance modelling, J. Nucl. Mater. 516 (2019) 373-412. https://doi.org/10.1016/j.jnucmat.2018.12.037
  4. K. Geelhood, W. Luscher, C. Beyer, J. Cuta, FRAPTRAN 1.4: A Computer Code for the Transient Analysis of Oxide Fuel Rods, US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, 2011, p. 1. NUREG/CR-7023.
  5. R. Williamson, J. Hales, S. Novascone, M. Tonks, D. Gaston, C. Permann, D. Andrs, R. Martineau, Multidimensional multiphysics simulation of nuclear fuel behavior, J. Nucl. Mater. 423 (2012) 149-163. https://doi.org/10.1016/j.jnucmat.2012.01.012
  6. G. Thouvenin, B. Michel, J. Sercombe, D. Plancq, P. Thevenin, Multidimensional modeling of a ramp test with the PWR fuel performance code ALCYONE, in: Proceedings of the 2007 LWR Fuel Performance Meeting/TopFuel 2007'Zero by 2010, 2007.
  7. J.-M. Ricaud, N. Seiler, G. Guillard, Multi-pin ballooning during LOCA transient: a three-dimensional analysis, Nucl. Eng. Des. 256 (2013) 45-55. https://doi.org/10.1016/j.nucengdes.2012.11.013
  8. G. Pastore, S. Novascone, R. Williamson, J. Hales, B. Spencer, D. Stafford, Modelling of fuel behaviour during loss-of-coolant accidents using the BISON code, in: Idaho National Lab. (INL), Idaho Falls, United States, 2015.
  9. R. Williamson, K. Gamble, D. Perez, S. Novascone, G. Pastore, R. Gardner, J. Hales, W. Liu, A. Mai, Validating the BISON fuel performance code to integral LWR experiments, Nucl. Eng. Des. 301 (2016) 232-244. https://doi.org/10.1016/j.nucengdes.2016.02.020
  10. S. Bascou, O. De Luze, S. Ederli, G. Guillard, Development and validation of the multi-physics DRACCAR code, Ann. Nucl. Energy 84 (2015) 1-18. https://doi.org/10.1016/j.anucene.2014.09.040
  11. A. Hellouin de Menibus, J. Sercombe, Q. Auzoux, C. Poussard, Thermomechanical loading applied on the cladding tube during the pellet cladding mechanical interaction phase of a rapid reactivity initiated accident, J. Nucl. Mater. 453 (2014) 210-213. https://doi.org/10.1016/j.jnucmat.2014.06.046
  12. A.A. Rezwan, M.R. Tonks, M.P. Short, Evaluations of the performance of multimetallic layered composite cladding for the light water reactor accident tolerant fuel, J. Nucl. Mater. 535 (2020), 152136. https://doi.org/10.1016/j.jnucmat.2020.152136
  13. Y. Deng, K. Shirvan, Y. Wu, G. Su, Utilization of 3D fuel modeling capability of BISON to derive new insights in performance of advanced PWR fuel concepts, J. Nucl. Mater. 516 (2019) 271-288. https://doi.org/10.1016/j.jnucmat.2019.01.032
  14. C. Allison, G. Berna, R. Chambers, E. Coryell, K. Davis, D. Hagrman, D. Hagrman, N. Hampton, J. Hohorst, R. Mason, SCDAP/RELAP5/MOD3. 1 Code Manual, Volume IV: MATPROeA Library of Materials Properties for Light-Water-Reactor Accident Analysis, Idaho National Engineering Laboratory, 1993.
  15. N. Kikuchi, Finite Element Methods in Mechanics, Cambridge University Press, New York, 1986.
  16. J. Crank, P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, in: Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 1947, pp. 50-67.
  17. T. Belytschko, W.K. Liu, B. Moran, K. Elkhodary, Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, Chichester, 2013.
  18. A. Ross, R. Stoute, Heat Transfer Coefficient between UO 2 and Zircaloy-2, in Atomic Energy of Canada Limited, 1962.
  19. E.H. Kennard, Kinetic Theory of Gases, McGraw-Hill, New York, 1938.
  20. D. Lanning, C. Hann, Review of methods applicable to the calculation of gap conductance in Zircaloy-clad UO2 fuel rods, in: Battelle Pacific Northwest Labs., Richland, United States, 1975.
  21. F. Norton, Creep of High Temperatures, in: McGraw Hill, New York, 1929.
  22. R. Hill, The Mathematical Theory of Plasticity, Oxford university press, New York, 1998.
  23. F.K.G. Odqvist, Theory of Creep under the Action of Combined Stresses with Applications to High Temperature Machinery, Generalstabens litografiska anstalts forlag, 1936.
  24. H. Rosinger, J. Bowden, R. Shewfelt, The anisotropic creep behaviour of Zircaloy-4 fuel cladding at 1073 K, in: Atomic Energy of Canada Ltd., 1982.
  25. J.C. Simo, T.J. Hughes, Computational Inelasticity, Springer Science & Business Media, New York, 2006.
  26. J.C. Nagtegaal, N. Rebelo, On the development of a general purpose finite element program for analysis of forming processes, Int. J. Numer. Methods Eng. 25 (1988) 113-131. https://doi.org/10.1002/nme.1620250111
  27. J.W. Yoon, D.Y. Yang, K. Chung, Elasto-plastic finite element method based on incremental deformation theory and continuum based shell elements for planar anisotropic sheet materials, Comput. Methods Appl. Mech. Eng. 174 (1999) 23-56. https://doi.org/10.1016/S0045-7825(98)00275-8
  28. Dassault Systemes Simulia Corporation, Abaqus Analysis User's Guide, 2014.
  29. J.C. Simo, R.L. Taylor, Consistent tangent operators for rate-independent elastoplasticity, Comput. Methods Appl. Mech. Eng. 48 (1985) 101-118. https://doi.org/10.1016/S0045-7825(85)90054-4
  30. N. Bhatnagar, V. Arya, Large strain creep analysis of thick-walled cylinders, Int. J. Non Lin. Mech. 9 (1974) 127-140. https://doi.org/10.1016/0020-7462(74)90004-3
  31. Y. Zhou, B. Devarajan, K.L. Murty, Short-term rupture studies of Zircaloy-4 and Nb-modified Zircaloy-4 tubing using closed-end internal pressurization, Nucl. Eng. Des. 228 (2004) 3-13. https://doi.org/10.1016/j.nucengdes.2003.06.013
  32. M.K. Khan, M. Pathak, A.K. Deo, R. Singh, Burst criterion for zircaloy-4 fuel cladding in an inert environment, Nucl. Eng. Des. 265 (2013) 886-894. https://doi.org/10.1016/j.nucengdes.2013.08.071
  33. R. Thieurmel, J. Besson, E. Pouillier, A. Parrot, A. Ambard, A.-F. Gourgues-Lorenzon, Contribution to the understanding of brittle fracture conditions of zirconium alloy fuel cladding tubes during LOCA transient, J. Nucl. Mater. 527 (2019), 151815. https://doi.org/10.1016/j.jnucmat.2019.151815
  34. C.P. Massey, K.A. Terrani, S.N. Dryepondt, B.A. Pint, Cladding burst behavior of Fe-based alloys under LOCA, J. Nucl. Mater. 470 (2016) 128-138. https://doi.org/10.1016/j.jnucmat.2015.12.018
  35. D.-H. Kim, G.-H. Choi, H. Kim, C. Lee, S.-U. Lee, J.-D. Hong, H.-S. Kim, Measurement of Zircaloy-4 cladding tube deformation using a three-dimensional digital image correlation system with internal transient heating and pressurization, Nucl. Eng. Des. 363 (2020), 110662. https://doi.org/10.1016/j.nucengdes.2020.110662
  36. R. Morrell, Handbook of Properties of Technical and Engineering Ceramics, Hmso, 1989.
  37. E.B.Y. Touloukian, Specific heat: nonmetallic solids, Thermophysical Properties Matter 5 (1970) 24.
  38. J. Moore, R. Graves, W. Fulkerson, D. McElroy, The Physical Properties of Tungsten, in: 1965 Conference on Thermal Conductivity, Denver, Colorado, 1965.
  39. F. Erbacher, H. Neitzel, H. Rosinger, H. Schmidt, K. Wiehr, Burst criterion of Zircaloy fuel claddings in a loss-of-coolant accident, in: Zirconium in the Nuclear Industry, ASTM International, 1982.