Acknowledgement
This work has been carried out under the Nuclear R&D Program supported by the Ministry of Science and ICT (NRF-2017M2A8A4015024).
References
- W. Wen, L. Capolungo, C.N. Tome, Mechanism-based modeling of solute strengthening: application to thermal creep in Zr alloy, Int. J. Plast. 106 (2018) 88-106. https://doi.org/10.1016/j.ijplas.2018.03.003
- G.S. Was, D. Petti, S. Ukai, S. Zinkle, Materials for future nuclear energy systems, J. Nucl. Mater. 527 (2019), 151837. https://doi.org/10.1016/j.jnucmat.2019.151837
- P. Van Uffelen, J. Hales, W. Li, G. Rossiter, R. Williamson, A review of fuel performance modelling, J. Nucl. Mater. 516 (2019) 373-412. https://doi.org/10.1016/j.jnucmat.2018.12.037
- K. Geelhood, W. Luscher, C. Beyer, J. Cuta, FRAPTRAN 1.4: A Computer Code for the Transient Analysis of Oxide Fuel Rods, US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, 2011, p. 1. NUREG/CR-7023.
- R. Williamson, J. Hales, S. Novascone, M. Tonks, D. Gaston, C. Permann, D. Andrs, R. Martineau, Multidimensional multiphysics simulation of nuclear fuel behavior, J. Nucl. Mater. 423 (2012) 149-163. https://doi.org/10.1016/j.jnucmat.2012.01.012
- G. Thouvenin, B. Michel, J. Sercombe, D. Plancq, P. Thevenin, Multidimensional modeling of a ramp test with the PWR fuel performance code ALCYONE, in: Proceedings of the 2007 LWR Fuel Performance Meeting/TopFuel 2007'Zero by 2010, 2007.
- J.-M. Ricaud, N. Seiler, G. Guillard, Multi-pin ballooning during LOCA transient: a three-dimensional analysis, Nucl. Eng. Des. 256 (2013) 45-55. https://doi.org/10.1016/j.nucengdes.2012.11.013
- G. Pastore, S. Novascone, R. Williamson, J. Hales, B. Spencer, D. Stafford, Modelling of fuel behaviour during loss-of-coolant accidents using the BISON code, in: Idaho National Lab. (INL), Idaho Falls, United States, 2015.
- R. Williamson, K. Gamble, D. Perez, S. Novascone, G. Pastore, R. Gardner, J. Hales, W. Liu, A. Mai, Validating the BISON fuel performance code to integral LWR experiments, Nucl. Eng. Des. 301 (2016) 232-244. https://doi.org/10.1016/j.nucengdes.2016.02.020
- S. Bascou, O. De Luze, S. Ederli, G. Guillard, Development and validation of the multi-physics DRACCAR code, Ann. Nucl. Energy 84 (2015) 1-18. https://doi.org/10.1016/j.anucene.2014.09.040
- A. Hellouin de Menibus, J. Sercombe, Q. Auzoux, C. Poussard, Thermomechanical loading applied on the cladding tube during the pellet cladding mechanical interaction phase of a rapid reactivity initiated accident, J. Nucl. Mater. 453 (2014) 210-213. https://doi.org/10.1016/j.jnucmat.2014.06.046
- A.A. Rezwan, M.R. Tonks, M.P. Short, Evaluations of the performance of multimetallic layered composite cladding for the light water reactor accident tolerant fuel, J. Nucl. Mater. 535 (2020), 152136. https://doi.org/10.1016/j.jnucmat.2020.152136
- Y. Deng, K. Shirvan, Y. Wu, G. Su, Utilization of 3D fuel modeling capability of BISON to derive new insights in performance of advanced PWR fuel concepts, J. Nucl. Mater. 516 (2019) 271-288. https://doi.org/10.1016/j.jnucmat.2019.01.032
- C. Allison, G. Berna, R. Chambers, E. Coryell, K. Davis, D. Hagrman, D. Hagrman, N. Hampton, J. Hohorst, R. Mason, SCDAP/RELAP5/MOD3. 1 Code Manual, Volume IV: MATPROeA Library of Materials Properties for Light-Water-Reactor Accident Analysis, Idaho National Engineering Laboratory, 1993.
- N. Kikuchi, Finite Element Methods in Mechanics, Cambridge University Press, New York, 1986.
- J. Crank, P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, in: Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 1947, pp. 50-67.
- T. Belytschko, W.K. Liu, B. Moran, K. Elkhodary, Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, Chichester, 2013.
- A. Ross, R. Stoute, Heat Transfer Coefficient between UO 2 and Zircaloy-2, in Atomic Energy of Canada Limited, 1962.
- E.H. Kennard, Kinetic Theory of Gases, McGraw-Hill, New York, 1938.
- D. Lanning, C. Hann, Review of methods applicable to the calculation of gap conductance in Zircaloy-clad UO2 fuel rods, in: Battelle Pacific Northwest Labs., Richland, United States, 1975.
- F. Norton, Creep of High Temperatures, in: McGraw Hill, New York, 1929.
- R. Hill, The Mathematical Theory of Plasticity, Oxford university press, New York, 1998.
- F.K.G. Odqvist, Theory of Creep under the Action of Combined Stresses with Applications to High Temperature Machinery, Generalstabens litografiska anstalts forlag, 1936.
- H. Rosinger, J. Bowden, R. Shewfelt, The anisotropic creep behaviour of Zircaloy-4 fuel cladding at 1073 K, in: Atomic Energy of Canada Ltd., 1982.
- J.C. Simo, T.J. Hughes, Computational Inelasticity, Springer Science & Business Media, New York, 2006.
- J.C. Nagtegaal, N. Rebelo, On the development of a general purpose finite element program for analysis of forming processes, Int. J. Numer. Methods Eng. 25 (1988) 113-131. https://doi.org/10.1002/nme.1620250111
- J.W. Yoon, D.Y. Yang, K. Chung, Elasto-plastic finite element method based on incremental deformation theory and continuum based shell elements for planar anisotropic sheet materials, Comput. Methods Appl. Mech. Eng. 174 (1999) 23-56. https://doi.org/10.1016/S0045-7825(98)00275-8
- Dassault Systemes Simulia Corporation, Abaqus Analysis User's Guide, 2014.
- J.C. Simo, R.L. Taylor, Consistent tangent operators for rate-independent elastoplasticity, Comput. Methods Appl. Mech. Eng. 48 (1985) 101-118. https://doi.org/10.1016/S0045-7825(85)90054-4
- N. Bhatnagar, V. Arya, Large strain creep analysis of thick-walled cylinders, Int. J. Non Lin. Mech. 9 (1974) 127-140. https://doi.org/10.1016/0020-7462(74)90004-3
- Y. Zhou, B. Devarajan, K.L. Murty, Short-term rupture studies of Zircaloy-4 and Nb-modified Zircaloy-4 tubing using closed-end internal pressurization, Nucl. Eng. Des. 228 (2004) 3-13. https://doi.org/10.1016/j.nucengdes.2003.06.013
- M.K. Khan, M. Pathak, A.K. Deo, R. Singh, Burst criterion for zircaloy-4 fuel cladding in an inert environment, Nucl. Eng. Des. 265 (2013) 886-894. https://doi.org/10.1016/j.nucengdes.2013.08.071
- R. Thieurmel, J. Besson, E. Pouillier, A. Parrot, A. Ambard, A.-F. Gourgues-Lorenzon, Contribution to the understanding of brittle fracture conditions of zirconium alloy fuel cladding tubes during LOCA transient, J. Nucl. Mater. 527 (2019), 151815. https://doi.org/10.1016/j.jnucmat.2019.151815
- C.P. Massey, K.A. Terrani, S.N. Dryepondt, B.A. Pint, Cladding burst behavior of Fe-based alloys under LOCA, J. Nucl. Mater. 470 (2016) 128-138. https://doi.org/10.1016/j.jnucmat.2015.12.018
- D.-H. Kim, G.-H. Choi, H. Kim, C. Lee, S.-U. Lee, J.-D. Hong, H.-S. Kim, Measurement of Zircaloy-4 cladding tube deformation using a three-dimensional digital image correlation system with internal transient heating and pressurization, Nucl. Eng. Des. 363 (2020), 110662. https://doi.org/10.1016/j.nucengdes.2020.110662
- R. Morrell, Handbook of Properties of Technical and Engineering Ceramics, Hmso, 1989.
- E.B.Y. Touloukian, Specific heat: nonmetallic solids, Thermophysical Properties Matter 5 (1970) 24.
- J. Moore, R. Graves, W. Fulkerson, D. McElroy, The Physical Properties of Tungsten, in: 1965 Conference on Thermal Conductivity, Denver, Colorado, 1965.
- F. Erbacher, H. Neitzel, H. Rosinger, H. Schmidt, K. Wiehr, Burst criterion of Zircaloy fuel claddings in a loss-of-coolant accident, in: Zirconium in the Nuclear Industry, ASTM International, 1982.