• Title/Summary/Keyword: Volatile Organic Compound

Search Result 268, Processing Time 0.033 seconds

Field Application of the Membrane System for the Recovery of VOCs from the Automobile Painting Process (도장공정 휘발성 유기화합물 회수를 위한 분리막 시스템의 현장 적용성 평가)

  • Choi, Whee Moon;Cho, Soon Haing;Kim, Soon Tae;Lee, Chung Seop;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.129-135
    • /
    • 2013
  • To recover of volatile organic compounds (VOCs) induced by painting process, we prepared separation system using hollow fiber membrane modules and evaluated the recovery performance of VOCs with different feed pressure and operating time. Concentration of volatile organic compound in permeate through the membrane increased with increasing operating time and pressure. Performance of the membrane for removing the VOCs when we applied 2-stage process showed better performance than that of single stage process.

Improved Mechanical and Durability Properties of PVC Sheet by Designing Three-Layered Structures

  • Park, Jun-Young;Kim, Woo-Sang;Kang, Hae-Cheon;Bae, Seokhu;Yoon, Jeong-Hwan;Yun, Juho;Lee, Eun-Kyoung;Kim, Namil
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.294-298
    • /
    • 2019
  • A three-layered PVC sheet consisting of polyvinyl chloride (PVC) and woven polyester fabric was prepared by extrusion and calendering. The flexibility and durability of the PVC were tuned by adding plasticizers, additives, and surface coatings. The tensile and tear strengths of the three-layered PVC sheet were higher than those of commercial two-layered sheet, while exhibiting low weight. The concentrations of the total volatile organic compounds (TVOCs) and formaldehyde (HCHO) emitted from the sheet were also lowered. The PVC sheet remained stable after prolonged exposure to UV light, signifying that the PVC sheet is suitable for cargo screen applications.

Volatile organic compounds gas sensor using side polished optical fiber (측면 연마 광섬유를 이용한 휘발성 유기 화합물 가스센서)

  • Yeom, Se-Hyuk;Heng, Yuan;Lim, Jun-Woo;Kim, Hak-Rin;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.428-434
    • /
    • 2010
  • In this study, a novel gas sensor based on evanescent field coupling between single mode side polished fiber and solvatochromic dye dispersed polymer waveguide was demonstrated. We fabricated a side polished optical fiber device as a volatile organic compounds gas detector. Solvatochromic dye was coated on the top of the side polished optical fiber to take advantage of evanescent field coupling. The solvatochromism can be defined as the phenomenon whereby a compound changes color, either by a change in the absorption or emission spectra of molecule, when reacted in different VOCs. The device reacted to polarity gases like a hexane, butane, xylene etc. The resonance wavelength was shifted by the xylene concentration which range was 0.1 ppm ~ 100 ppm. Also, the response with the concentration was lineer and the detection limit was 0.1 ppb.

A Study on Developing of Soldering Flux (납땜 플럭스 개발에 관한 연구)

  • 이통영
    • Fire Science and Engineering
    • /
    • v.14 no.2
    • /
    • pp.33-38
    • /
    • 2000
  • Flux, essentially used in soldering process of PCB (Printed Circuit Board) in electronics industry, contains IPA (Isopropyl alcohol) and methanol, which are highly inflammable and explosive. Hazard Chemical Controlling Law classified methanol as toxic material and Environmental Law classified methanol as VOC (Volatile Organic Compound). So there have been pressing needs of developing substitutes for the existing Flux. New solvent which is non-flammable and main component is DCP having same specific character of the existing Flux. It's been combirated with proper composition ratio adding stabilizer. As a result, it relieved working Environment Allowance thickness 200 ppm to 470 ppm, chance of not been soldered 0.083% to 0%, spread 85% to 87%, power saving resistance 1.0$\times$$10^{12}$$\Omega$ to 6.9$\times$$10^{12}$$\Omega$, which means a lot better than the existing Flux. Therefore, Flux confirmed the chance of improving productivity, safety, environment safety and quality. Also, Flux got a satisfied result after product quality test and product reliability test.

  • PDF

Catalytic Deep Oxidation of Volatile Organic Compound Toluene over CuO/γ-Al2O3 Catalysts at Lower Temperatures (CuO/γ-Al2O3 촉매상에서 휘발성 유기화합물 톨루엔의 저온산화)

  • Kim Sang-Hwan;Kim Jae-Sik;Yang Hee-Sung;Y Vu Trinh Nhu;Park Hyung-Sang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.64-73
    • /
    • 2007
  • The catalytic activity of transition metals (Cu, Co, Mn, Fe and Ni) supported on ${\gamma}-Al_2O_3$ for the oxidation of toluene was investigated in the microreactor of fixed-bed type. The catalytic activity of transition metals for the oxidation of toluene turned out to be increasing in the order of Ni$Cu/{\gamma}-Al_2O_3$ catalysts for the oxidation of toluene increased with the increasing loadings of copper, reached the maximum activity at 5% loadings of copper, and decreased with higher loadings of copper in the catalysts. The activity of $Cu/{\gamma}-Al_2O_3$ catalysts for the oxidation of toluene decreased with the increasing calcination temperatures. This might result from the decreasing surface area of catalysts due to the sintering of copper oxide as well as ${\gamma}-Al_2O_3$ supports. The 5wt% $Cu/{\gamma}-Al_2O_3$ catalysts calcined at $400^{\circ}C$ for 4 hrs in the air showed the highest activity for the oxidation of toluene. Mutual inhibition was observed for the binary mixture of toluene and xylene. The activity of the easy-to-oxidize toluene was greatly decreased while the difficult-to-oxidize xylene was slightly decreased in the binary mixture of toluene and xylene. It might suggest that the inhibition of toluene and xylene in the binary mixture resulted from the competitive adsorption for the adsorbed oxygen on the catalytic surface.

The Development of Absorption Elements of Ceramic Rotors for the Semiconductor Clean Room System (반도체 클린룸용 세라믹 Rotor 흡착제 개발)

  • 서동남;하종필;정미정;문인호;조상준;김익진
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • The present invention relates to a absorption rotor for removed VOC(volatile organic compound) and humidity in semiconductor clean room system. A absorption rotor medium is made by NaX zeolite and TS-1 zeolite formed on a honeycomb matrix of ceramic papers. The crystallization of NaX zeolite was hydrothermal reaction, and NaX zeolite crystals of a uniform particle size of 5$\mu$m were synthesized that NaX zeolite seed crystals (2~3$\mu$m) added in a batch composition at levels of 3~15 wt$\%$. The seeding resulted in an increase in the fraction of large crystals compared with unseeded batches and successfully led to a uniform NaX zeolite crystal. The microporous zeolite-type titanosilicate(TS-1) was synthesized by different of the reactant solution pH. The pH range of reactant solution has been changed from 10.0 to 11.5 TS-1 zeolite (ETS-10), having a large pore(8~10 $\AA$), was synthesized at 10.4 of pH, since TS-1 zeolite (ETS-4), having a small pore(3~5$\AA$), was synthesized at 11.5 of pH.

  • PDF

A studies on the Air pollutant Emission Rate calculation from vessels in the Ulsan Port (울산항 선박으로부터의 대기오염 배출량 산정에 관한 연구)

  • Cheong Kwng-Hyun;Kim Sung-Joo;Park Hung-Suck
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.111-118
    • /
    • 2005
  • The Protocol adopted in Sep. 1997 included the new Annex VI of MARPOL 73/78, which will enter into force on 19 May 2005. MARPOL Annex VI sets limits on sulphur oxide and nitrogen oxide emissions from ship exhausts and prohibits deliberate emissions of volatile organic compound (VOCs) from oil tanker in port and oil terminal. This study was conducted to find out countermeasures for the new Annex VI of MARPOL 73/78 and draw up a feasible management plan. The emission quantity of NOx and SOX from ships in Ulsan Port was calculated by U.S. EPA and Japan Marine Engineering emission factors of air pollutant from ship exhausts. In addition, volatile organic compound (VOCs) from oil tanker during the loading and discharging period, also calculated.

  • PDF

A Study on Changes in Indoor Air Pollution by Educational Activities -Centering on Newly-Established Elementary Schools- (교육활동에 따른 실내오염도 변화에 관한 연구 -신설 초등학교를 중심으로-)

  • Jeon, Seok-Jin
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.6 no.2
    • /
    • pp.66-90
    • /
    • 2007
  • The purpose of this study is to measure and analyze primary causes of indoor air pollution, including carbon dioxide, minute dust, and total volatile organic compounds, for each room before the beginning of a class through the time of discharge after the end of the class in general classrooms, computer rooms, and science rooms of three newly-established schools that opened in 2006, examine properties of indoor air environment in each room by educational activities at school, and determine effective management schemes; the results of this study can be summarized as follows: 1) As for implications for each item found in the mean for each place, since minute dust (PM10) was more likely to occur in time slots full of students' activities, such as a traveling class and a recess, than in the middle of a class and could be expected fully, it is necessary to make a scheme for cleaning in order to reduce minute dust within a room, for example, by usually using a vacuum cleaner indoors. 2) While carbon dioxide was expected to vary with the differences in the amount of breath between higher-graders and lower-graders in a general classroom but showed insignificant difference by grades, showing differences in pollution by four times at a maximum according to the opening of a window as expected, it is necessary to implement artificial or natural ventilation and take a positive measure, for example, by presenting a concrete ventilation scheme, in order to improve indoor air pollution at a room practice. 3) Total volatile organic compounds were found to exceed the standard by more than twice in general classrooms, science rooms, and computer rooms of the schools because of building materials, furnitures including desks and chairs, panels and boards for environment beautification, and items which could be detected even from students' clothes; while a field directly-reading tool was used, obtaining high reliability for the results, it is necessary to apply an analytical method based on process test separately for actual correct measurement if a significantly great amount of total volatile organic compounds appear as compared with other schools due to measuring expenses and consecutive measurements. 4) Since formaldehyde (HCHO) was generally found to exceed the standard in general classrooms, science rooms, and computer rooms, it is necessary to establish and operate a ventilator during a class in a computer room which requires airtightness and a science room in which an organic compound should be used for a class.

  • PDF

Electrical Discharge Plasma in a Porous Ceramic Membrane-supported Catalyst for the Decomposition of a Volatile Organic Compound (다공질 세라믹지지 촉매 상에서의 플라즈마 방전을 이용한 휘발성유기화합물의 분해)

  • Jo, Jin-Oh;Lee, Sang Baek;Jang, Dong Lyong;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.433-437
    • /
    • 2013
  • Electrical discharge plasma created in a multi-channel porous ceramic membrane-supported catalyst was applied to the decomposition of a volatile organic compound (VOC). For the purpose of improving the oxidation capability, the ceramic membrane used as a low-pressure drop catalyst support was loaded with zinc oxide photocatalyst by the incipient wetness impregnation method. Alternating current-driven discharge plasma was created inside the porous ceramic membrane to produce reactive species such as radicals, ozone, ions and excited molecules available for the decomposition of VOC. As the voltage supplied to the reactor increased, the plasma discharge gradually propagated in the radial direction, creating an uniform plasma in the entire ceramic membrane above a certain voltage. Ethylene was used as a model VOC. The ethylene decomposition efficiency was examined with experimental variables such as the specific energy density, inlet ethylene concentration and zinc oxide loading. When compared at the identical energy density, the decomposition efficiency obtained with the zinc oxide-loaded ceramic membrane was substantially higher than that of the bare membrane case. Both nitrogen and oxygen played an important role in initiating the decomposition of ethylene. The rate of the decomposition is governed by the quantity of reactive species generated by the plasma, and a strong dependence of the decomposition efficiency on the initial concentration was observed.

Improved Vapor Recognition in Electronic Nose (E-Nose) System by Using the Time-Profile of Sensor Array Response (센서 응답의 Time-Profile 을 이용한 전자 후각 (E-Nose) 시스템의 Vapor 인식 성능 향상)

  • Yoon Seok, Yang
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.329-334
    • /
    • 2004
  • The electronic nose (E-nose) recently finds its applications in medical diagnosis, specifically on detection of diabetes, pulmonary or gastrointestinal problem, or infections by examining odors in the breath or tissues with its odor characterizing ability. The odor recognition performance of E-nose can be improved by manipulating the sensor array responses of vapors in time-profile forms. The different chemical interactions between the sensor materials and the volatile organic compounds (VOC's) leave unique marks in the signal profiles giving more information than collection of the conventional piecemal features, i.e., maximum sensitivity, signal slopes, rising time. In this study, to use them in vapor recognition task conveniently, a novel time-profile method was proposed, which is adopted from digital image pattern matching. The degrees of matching between 8 different vapors were evaluated by using the proposed method. The test vapors are measured by the silicon-based gas sensor array with 16 CB-polymer composites installed in membrane structure. The results by the proposed method showed clear discrimination of vapor species than by the conventional method.