Electrical Discharge Plasma in a Porous Ceramic Membrane-supported Catalyst for the Decomposition of a Volatile Organic Compound

다공질 세라믹지지 촉매 상에서의 플라즈마 방전을 이용한 휘발성유기화합물의 분해

  • Jo, Jin-Oh (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Lee, Sang Baek (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Jang, Dong Lyong (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Mok, Young Sun (Department of Chemical and Biological Engineering, Jeju National University)
  • 조진오 (제주대학교 생명화학공학과) ;
  • 이상백 (제주대학교 생명화학공학과) ;
  • 장동룡 (제주대학교 생명화학공학과) ;
  • 목영선 (제주대학교 생명화학공학과)
  • Published : 2013.08.10

Abstract

Electrical discharge plasma created in a multi-channel porous ceramic membrane-supported catalyst was applied to the decomposition of a volatile organic compound (VOC). For the purpose of improving the oxidation capability, the ceramic membrane used as a low-pressure drop catalyst support was loaded with zinc oxide photocatalyst by the incipient wetness impregnation method. Alternating current-driven discharge plasma was created inside the porous ceramic membrane to produce reactive species such as radicals, ozone, ions and excited molecules available for the decomposition of VOC. As the voltage supplied to the reactor increased, the plasma discharge gradually propagated in the radial direction, creating an uniform plasma in the entire ceramic membrane above a certain voltage. Ethylene was used as a model VOC. The ethylene decomposition efficiency was examined with experimental variables such as the specific energy density, inlet ethylene concentration and zinc oxide loading. When compared at the identical energy density, the decomposition efficiency obtained with the zinc oxide-loaded ceramic membrane was substantially higher than that of the bare membrane case. Both nitrogen and oxygen played an important role in initiating the decomposition of ethylene. The rate of the decomposition is governed by the quantity of reactive species generated by the plasma, and a strong dependence of the decomposition efficiency on the initial concentration was observed.

다공질 세라믹 막을 사용하는 플라즈마-촉매 반응기에서 휘발성유기화합물의 분해가 수행되었다. 저압차 촉매 지지체로 사용된 세라믹 막에 광촉매인 산화아연을 담지하여 휘발성유기화합물의 산화 성능을 개선하고자 하였다. 교류 고전압에 의해 구동되는 플라즈마가 다공질 세라믹 막 내에서 전개되면서 휘발성유기화합물의 분해에 이용되는 라디칼, 오존, 이온, 여기상태 분자 등 다양한 활성성분을 생성하게 된다. 반응기에 공급되는 고전압이 증가함에 따라 플라즈마가 점차 방사방향으로 전개되어, 일정 전압을 넘어서면 세라믹지지체 전체적으로 균일한 플라즈마가 생성되었다. 휘발성유기화합물 분해 성능 평가에는 에틸렌이 이용되었다. 전기에너지밀도, 반응기 입구 에틸렌 농도, 촉매 담지 여부, 기체 조성에 따른 에틸렌 분해효율이 조사되었다. 같은 에너지 밀도에서 비교하면 산화아연이 담지된 촉매에서의 에틸렌 분해 효율이 담지되지 않은 경우보다 더 높은 것으로 나타났으며, 기체 조성 변화 실험을 통해 폐가스의 주요 구성성분인 산소와 질소 모두 에틸렌의 분해를 개시하는데 중요한 역할을 함을 알 수 있었다. 일반적인 기상반응과 달리, 플라즈마 반응기에서의 에틸렌 분해 반응은 활성 성분의 양에 의해 지배되므로, 방전 전력이 동일할 경우 에틸렌 농도가 높아질수록 분해효율이 저하되었다.

Keywords

References

  1. A. Mizuno, Plasma Phys. Control. Fusion, 49, A1 (2007). https://doi.org/10.1088/0741-3335/49/5A/S01
  2. T. Zhu, Y. D. Wan, C. H. Zhang, M. H. Sun, X. W. He, D. Y. Xu, and X. Q. Shu, Adv. Mater. Res., 152, 973 (2010).
  3. T. Zhu, Y. Wan, H. Li, S. Chen, and Y. Fang, IEEE Trans. Plasma Sci., 39, 1695 (2011). https://doi.org/10.1109/TPS.2011.2158328
  4. T. Blackbeard, V. Demidyuk, S. Hill, and J. C. Whitehead, Plasma Chem. Plasma Proc., 29, 411 (2009). https://doi.org/10.1007/s11090-009-9189-8
  5. Y. S. Mok, M. Dors, and J. Mizeraczyk, IEEE Trans. Plasma Sci., 32, 799 (2004). https://doi.org/10.1109/TPS.2004.826057
  6. V. Demidyuk and J. C. Whitehead, Plasma Chem. Plasma Proc., 27, 85 (2007). https://doi.org/10.1007/s11090-006-9045-z
  7. J. C. Whitehead, Pure Appl. Chem., 82, 1329 (2010). https://doi.org/10.1351/PAC-CON-10-02-39
  8. M. S. Gandhi, A. Ananth, Y. S. Mok, J.-I. Song, and K.-H. Park, Chemosphere, 91, 685 (2013). https://doi.org/10.1016/j.chemosphere.2013.01.060
  9. H. L. Chen, H. M. Lee, S. H. Chen, and M. B. Chang, Ind. Eng. Chem. Res., 47, 2122 (2008). https://doi.org/10.1021/ie071411s
  10. E. L. Reddy, J. Karuppiah, V. M. Biju, and C. Subrahmanyam, Int. J. Energy Res., 2012, DOI: 10.1002/er.2924.
  11. A. Zamaniyan, A. A. Khodadadi, Y. Mortazavi, and H. Manafi H, J. Ind. Eng. Chem., 17, 767 (2011). https://doi.org/10.1016/j.jiec.2011.05.028
  12. K. Hensel, Eur. Phys. J. D, 54, 141 (2009). https://doi.org/10.1140/epjd/e2009-00073-1
  13. S. Sato and A. Mizuno, Int. J. Plasma Environ. Sci. Technol., 4, 18 (2010).
  14. S. M. Hashim, A. R. Mohamed, and S. Bhatia, Rev. Chem. Eng., 27, 157 (2011).
  15. Y. F. Yan, L. Zhang, L. X. Li, and Q. Tang, J. Inorg. Mater., 26, 1233 (2011). https://doi.org/10.3724/SP.J.1077.2011.01233
  16. T. Mizushima, K. Matsumoto, J. Sugoh, H. Ohkita, and N. Kakuta, Appl. Catal. A: General, 265, 53 (2004). https://doi.org/10.1016/j.apcata.2004.01.002
  17. A. S. A. Al-Fatesh, A. A. Ibrahim, A. H. Fakeeha, A. E. Abasaeed, and M. R. H. Siddiqui, J. Ind. Eng. Chem., 17, 479 (2011). https://doi.org/10.1016/j.jiec.2011.05.029
  18. K. Takaki, J.-S. Chang, and K. G. Kostov, IEEE Trans. Dielectr. Electr. Insul., 11, 481 (2004).
  19. W. G. Mallard, F. Westley, J. T. Herron, and R. Hampson, National Institute of Standards and Technology (NIST) Chemical Kinetics Database: Version 2Q98 (1998).
  20. J. T. Herron, J. Phys. Chem. Ref. Data, 28, 1453 (1999). https://doi.org/10.1063/1.556043