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Abstract : The electronic nose (E-nose) recently finds its applications in medical diagnosis, specifically on detection of diabetes, pulmonary or

gastrointestinal problem, or infections by examining odors in the breath or tissues with its odor characterizing ability. The odor recognition performance
of E-nose can be improved by manipulating the sensor array responses of vapors in time-profile forms. The different chemical interactions between the
sensor materials and the volatile organic compounds (VOC’s) leave unique marks in the signal profiles giving more information than collection of the
conventional piecemal features, i.e., maximum sensitivity, signal slopes, rising time. In this study, to use them in vapor recognition task conveniently, a
novel time-profile method was proposed, which is adopted from digital image pattern matching. The degrees of matching between 8 different vapors
were evaluated by using the proposed method. The test vapors are measured by the silicon-based gas sensor array with 16 CB-polymer composites
installed in membrane structure. The results by the proposed method showed clear discrimination of vapor species than by the conventional method.
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INTRODUCTION

The electronic nose (E-nose) system has been mainly used
in food industry where it reduces the amount of the analytical
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chemistry, i.e., inspection of food quality, control of cooking
process, and checking odors plastic packaging, etc. due to its
ability of characterizingodors, vapors, and gases [1].
Recently, various composites from carbon-black

(CB) and organic polymers are developed as gas sensors for
portable use due to its chemical diversity by the selection of
proper organic polymers and improved operability with
lower power consumption than the metal oxide gas sensors
[2,3]. With the help of these improvements in portability and
ease of use, the E-nose is widening its potentials in
environmental and pollution monitoring ie. real-time
identification of contaminants, analysis of fuel mixture,
detection of oil leaks, testing ground water for odors, and
identification of toxic waste, etc. And it also finds its
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applications in medical diagnosis, specifically on detection of
diabetes, pulmonary or gastrointestinal problem, or
infections by examining odors in the breath or tissues [4,5].
The presence of some volatile compounds is associated to
those diseases. For example, mercaptans and aliphatic acids
were found in the breath of patients with liver cirrhosis [6],
and dimethyl- and trimethylamine were found in the breath
of uremic patients [7]. Some alkanes (hexane and
methylpentane among the others) and benzene derivatives
such as o-toluidine and aniline observed in affected
individuals have been claimed to be correlated to the lung
cancer [8].

The volatile compounds show unique response signals in
their magnitudes and shapes, so that the patterns gathered
from the sensor array help the artificial intelligence
algorithm to recognize the vapors automatically. In case of
chemi-resistive gas sensor array system, themost commonly
used feature describing the pattern is the maximum
sensitivity [2]. It is defined by the maximum ratio of
resistance change induced by the inhaled vapors [2]. And
several shape-related features such as signal slopes,
rising-time, etc. are used together to improve the vapor
identification rate in pattern recognition algorithm.
Additionally, many statistical techniques are applied to
differentiate the vapors based on these features [2].
However, when we identify the vapors based on the
maximum sensitivities, there are unexpected overlaps
between different vapor species. Additional parameters
taken to compensate for these errors need sophisticated
algorithms to extract from noisy signals. They depend more
on the characteristics of gas flow unit in the system than on
the interaction characteristics between the vapor and the
sensor materials. They are thought to be fragmentary, that is,
it is hard to maintain the consistencies among them when
surrounding conditions are varied.

Since the E-nose basically responds to wide range of
volatile compounds, it is no more important to develop
sensor arrays showing high selectivity for various vapors
than to make full use of the sensor-array response in
recognizing target vapors [2]. There are much more
information in the time-profiles of the sensor array response
itself, each of which is the vivid record of the unique
interaction between the organic polymer composites and the
incoming vapor. Therefore, this paper proposes a new
algorithm to utilize the time response of the sensor array
exposed to vapors in way that is more natural. It keeps the
whole profile records of the sensor array time-responses and
compares them with one another quantitatively by adopting
a correlation-based image pattern matching method. The
proposed methods were verified with 8 different vapor
species and the 16 channel sensor array. The identification of
the basic volatile organic compounds (VOC’s) is a necessary
step prior to the recognition ofthe volatile pattern of their
mixtures, which is more realistic and complicated.

923X : A25H, A535, 2004

SENSOR ARRAY AND MEASUREMENT
OF THE VAPOR RESPONSE

The sensor array was implemented by dispensing the
CB-polymer composite-solvent solution in the micromachined
gas sensor array chip in figure 1. It consists of 16 separate
sensors with an interdigitated electrode, microheater, and
micromachined membrane in each channel for further
temperature-controlled measurementapplications. The 16 CB
polymer composites are described in table 1. The resistive
sensors are interfaced with the instrumentation circuitry
including voltage divider, amplifier, and low-pass filter. The
measured data are collected in PC using data acquisition
(DAQ) board DAQ6062E and LabVIEW (National
Instrumentation, USA). The voltage-diver operated in the
range from 10 to +10 volts and gains of 16 identical amplifiers
were set to 10 (output/input voltage) for maximum DAQ
resolution.

The proposed method was applied to 8 different vapor
species (acetone, benzene, cyclo-hexane, ethanol, heptane,
methanol, propanol, toluene). Each vapor was measured 20
times using the sensor array [9], as pictured in figure 1
yielding 160 time-profilestotal. The flow control unit in our
system allows the vapors to flow in at desired concentration
during about 60 seconds, and afterward flushes the
remainder by air flow for about 2 minutes. The
chemi-resistive sensor array undergoes resistance change
upon exposure to vapor and succeeding air flow. It shows
typical response signal in figure 2. The rising voltages imply
the increased resistances, and the falling voltages correspond
to the decreased resistances. The measured data are handled
by MATLAB (Mathworks, USA) on Pentium IV PC.

(b)
Fig. 1. Photograph of gas sensor array chip. (a) its physical
dimensions and 16 separate sensing channels with an interdigitated
electrode, microheater, and micromachined membrane well, and (b)
CB polymer composites sensor built inside of the micromachined well
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Fig. 2. Typical time-responses of 16 channel sensor array with
respect to inflow of acetone vapor at 5000 ppm

Table 1. The list of 16 CB polymer composites used in
Si-based sensor array

Ch1 poly(methly methacrylate)

Ch2 polyvinylpyrrolidone

Ch3 poly(vinyl acetate)

Ch4 poly(ethlene oxide)

Ch5s polycaprolactone

Ché poly(4-methylstyrene)

Ch7 poly(stylene—co—methyl methacrylate)
Ch8 poly{ethylene-co-vinyl acetate)
Ch9 poly(Bisphenol A Carbonate)

Ch 10 poly(4-vinyl pyridine)

Ch 11] poly{viny! butyral)-co-viny! alcohol-co-vinyl acetate

Ch12 poly(vinyl stearate)

Ch 13 Ethyl cellulose

Ch 14| polystyrene—black-polyisoprene—black—polystyrene

Ch 15 hydroxypropyl cellulose

Ch 16 cellulose acetate

No.Polymer L.D.

MULTI-CHANNEL PROFILES

As stated previously, figure 2 contains the detailed
records of the interactions between the sensor materials and
the incoming vapors. The records are slightly different
according to the vapors. These subtle differences can be
observed effectively by combining the multi-channel signals
together. For visual example, the 3rd channel response
versus the 4thchannel response is plotted in figure 3. It
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makes interesting trajectory on 2-dimensional space with
respect to a vapor inflow and outflow. All of the 160
responses from the 8 vapor species are traced in the same
manner and are shown in figure 4. Each has 20 identical
circulated response trajectories with slight offsets due to the
baseline-shift between repeated measurements. Every vapor
has its own trajectory pattern distinguished from one
another. Heuristically, it is thought that the differences in
their patterns become more significant as more channels
participate in traces together. Equation (1) defines the
multi-channel profiles in vector form.

pi(0)
Pr=| "

2, )

pn(t): response profiles of nth sensor channel.
Pn(t): n-dimensional response profile in a vector form.
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Fig. 3. A typical plot of the combined response profiles. (x, y)
positions in the right graph are correspond to the values of
(channel 3, channel 4) in the left graph

acetone’

- propanol| toluend

Fig. 4. 8 basic vapors show various combined profiles in 2-dimensional
space. As in the figure 3, the horizontal and vertical axis correspond to
the magnitude of response at sensor 3 and 4, respectively
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Figure 5 shows an exampled trace of P3(t)in classification
space to make the patterns clear in the vapor recognition
view point. The clustering results for the same vapor set
using the conventional maximum sensitivities are shown in
figure 6 for comparison. The patterns in figure 5 are more
easily and clearly identified than those in figure 6 owing to
the detailed records of the chemical reaction on the vapor
sensors. Therefore, it can reduce the errors in vapor
recognition if these trajectory or curvature patterns are
properly differentiated.
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Fig.5. Vapor clustering results by the multi-channel profiles
(x-y-z axes correspond to sensor 1, sensor 2, sensor 3,
respectively)
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Fig 6. Vapor clustering results by the conventional maximum
sensitivitie

PATTERN MATCHING

Though there are many complicated ways to describe
quantitatively the curvatures for differentiation, such
patterns can be clustered easily with refer to the
measure-of-similarity’s among them. The P16(t)’s of vapors
are associated with intensity-mapped pictures as in figure 7.
The properties of profiles are reserved in intensity patterns
of the image. Then the measure-of-similarity’s between any
two vapors are simply evaluated by correlation-based image
pattern matching algorithm defined by (2). Equation (2) has a
value between 1 and+1, and becomes large as the similarity

9] 383l A - A258, A55, 2004

between x and y increases. It equals to -1 when x and y are
negatively identical, and equals to 1 when x and yare
positively identical. For computation, all the vapor images
were maintained equal in their sizes by controlling the time
for signal measurement and were slightly adjusted before the
computation if necessary.
2
O,

Gx o y (2)

Corr. coef, =

x and y: intensity values of two vapor images,
respectively.

xy: covariance of x and y.

x, and y: standard deviation of x and y, respectively.

This clustering method is more robust than the
conventional piecemeal-feature extraction method. Most of
feature extraction algorithms are suffering from the
distortions by noisy interference and artifacts, i.e.,
unexpected fluctuation in vapor flow or temperature
changes, etc. To the contrary, since it belongs to statistic
methodology, the correlation-based matching
diminishes the unexpected artifacts or the
interferences.

score
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Fig 7. Images associated with the multi-channel profiles of

(a) ethanol, (b) methanol. The horizontal axis corresponds to

the time index, and the vertical labels imply the channel index.
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RESULTS AND DISCUSSION

The pattern matching scores among 8 different vapor
species evaluated by the proposed methods are shown in
table 2. As can be seen in the table, there are 64 cases of
pairing 2 vapor species for pattern matching. In each case,
both vapors have 20 repeated measurements, and hence 400
matching scores. Each value in table 2 is their average. The
scores using the conventional maximum sensitivities as
shown in figure 9 are also evaluated in table 3 for
comparison. Table 2 shows significantly higher contrast
between the same (on-diagonal positions) and different
(off-diagonal positions) vapor species than table 3. Figure 8
and figure 9 show the same results in intensity-mapped
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image formats with emphasis on the figure 8's significant
enhancements in gray level differences between matching
vapors and non-matching vapors. When implemented in real
system, the higher contrast in table 2 helps the E-nose system
to set definite thresholds to cut off the non-matching samples
in vapor identification

Though the horizontal size of the images (length of
time-responses) is about 2000 data points which seems to be
large, the amount of computation is at most comparable to
the multi-layer neural network implementation taking signal
descriptive features as inputs. Actually, the computation for
a single matching score needs less than 1 second by
MATLAB on Pentium IV PC. Moreover, the complexity in
the evaluation of the matching scores is not so high as that in
the conventional piecemealfeature extraction. The
conventional feature extractions such as finding the
maximum point, computing the slopes, estimating the
rising-times up to maximum value or back tobaseline level,
etc. need some sophisticated data manipulations. And they
are affected more severely by the vapor flow condition of the
system than by the interaction between sensors and vapors.
These effects are difficult to compensate by algorithms. The
correlation-based pattern matchingis robust to these
annoying effects as stated previously, and the changes in the
flow control are simply compensated by adjusting the
horizontal size of the vapor images to the pre-defined target
pictures. These picturescan be made up simply by keeping
some typical responses of the target vapors. There is no need
to analyze the signals to obtain any characteristic parameters.

By the way, the flow effects are canceled out by
combining the multi-channel values into a curvature as in
figure 3. It shows consequently only the relative differences
in the activities of sensing materials in response to the
incoming vapor. This kind of relative quantity is so useful in
the application fields of automatic pattern recognition or
machine intelligence because it can exclude the need for
extra adjustment or calibration caused by changes in flow
units or surrounding conditions. It is necessary to explore
new methods to use the information in the curvatures.
Additionally, the time-profile method seems to be lossless,
from the information point of views, since it reserves the
whole record of the vapor measurement signals. Excluding
the power-line interferences, the random fluctuations overall
in the measured profiles are thought to be one of the
informative properties of the vapor response signals. Some
advanced image-based techniques such as texture or
histogram analysis are known to be able to define significant
patterns in such random components. They will be adopted
in further study to enhance the robustness and accuracy of
the vapor recognition algorithms.

acetone cyciohexane heptane propanol
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Fig 8. Intensity level representation of the matching scores in
table 2.
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Fig 9. Intensity level representation of the matching scores in
table 3.

CONCLUSIONS

The results verified that the correlation-based pattern
matching with the multi-channel response profiles is able to
classify the vapor species based on the evaluated scores.
Therefore, it can be concluded that the proposed time-profile
method is expected to improve the vapor recognition in
E-nose, if it once has some pre-defined pictures of the target
vapor profiles. Likewise, the proposed method can be
applied to the pattern recognition of the VOC mixtures in
realistic situations.

Now, the E-nose in this study is being developed in
portable form with miniaturized electronics. This will help
the on-site acquisitionand test of the breath samples and
consequently will make it possible to use the E-nose on the
point-of-care-testing (POCT) in medical applications.

J. Biomed. Eng. Res. : Vol. 25, No. 5, 2004
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Table 2. Matching scores by 16—-channel profiles between 8 vapor species. Each value is an average of 400 possible pairs between

20 repeated measurement for 2 vapors, respectively.

acetone | benzene —r?ggallone ethanol | heptane | methanol | propanol | toluene
acetone 0.996 0.468 0.839 0.654 0.449 0.921 0.746 0.145
benzene - 0.930 0.750 0.835 0.903 0.422 0.845 0.315

cyclo _ _
—hexane 0.990 0.878 0.754 0.802 0.942 0.306
ethanol - - - 0.977 0.757 0.692 0.934 0.260
heptane - - - - 0.974 0.406 0.801 0.322
methanol - - - - - 0.990 0.691 0.031
propanol - - - - - - 0.993 0.407
toluene - - - - - - - 0.995
Table 3. Matching scores for the same vapor measurements by the conventional maximum sensitivities

acetone | benzene —t?g%%e ethanol | heptane | methanol | propanol | toluene
acetone 0.995 0.781 0.829 0.945 0.595 0.650 0.903 0.795
benzene - 0.997 0.959 0.845 0.927 0.278 0.944 0.995

cyclo _ _
_hexane 0.880 0.889 0.914 0.452 0.934 0.949
ethanol - - - 0.995 0.673 0.673 0.953 0.858
heptane - - - - 0.998 0.165 0.793 0.899
methanol - - - - - 0.993 0.448 0.282
propanol - - - - - - 1.000 0.957
toluene - - - - - - - 1.000
REFERENCES 5. J. W. Gardner, H. W. Shin, and E. L. Hines, "An electronic

1. T. C. Pearce, S. S. Schffman, H. T. Nagle, and J. W.
Gardner, Handbook of machine olfaction, Weinheim,
Wiley-Vch, 2003

2. B. J. Doleman, M. C. Lonergan, E. J. Severin, T. P. Vaid, and
N. S. Lewis, "Quantitative study of the resolving power of arrays
of carbon black-polymer composites in various vapor-sensing
tasks", Anal. Chem., Vol. 70, pp. 4177-4190, 1998

3. Y. Mo, Y. Okawa, K. Inoue, and K. Natukawa, "Low-voltage
and low-power optimization of micro-heater and its on-chip
drive circuitry for gas sensor array", Sens. Actuators A
Phys., Vol. 100, pp. 94-101, 2002

4. C. D. Natale, A. Macagnano, E. Martinelli, R. Paolesse, G.
D’ Arcangelo, C. Roscioni, A. Finazzi-Agro, and A. DY
Amico, "Lung cancer identification by the analysis of breath by
means of an array of non-selective gas sensors", Biosensors
and Bioelectronics, Vol. 18, pp. 1209-1218, 2003

o733} x| : A|257, A|55, 2004

nose system to diagnose illnesss", Sensors and Actuators B
Chem., Vol. 70, pp. 19-24, 2000

6. H. Kaji, M. Hisamura, N. Sato, and M., Murao, "Evaluation
of volatile sulfur compounds in the expired alveolar gas in gas
patients with liver cirrhosis”, Clinical Chimica Acta., Vol.
85, pp. 279-284, 1978

7. M. Simenhoff, ].Burke, L. Saukkonen, A. Ordinario, and R.
Doty, "Biochemical profile or uremic breath", New England
Journal of Medicine, Vol. 297, pp. 132-135, 1977

8. H. J. O'Neil, S. M. Gordon, M. H. O’Neil, R. D. Gibbons,
and J. P. Szidon, "A computerized classification technique for
screening for the presence of breath bomarkers in lung cancer",
Clinical Chemistry, Vol. 34, pp. 1613-1618, 1988

9.5.Ha, Y. S. Kim, Y. Yang, Y. ]. Kim, S. Cho, H. Yang, and Y.
T. Kim, "Integrated and microheater embedded gas sensor array
based on the polymer composites dispensed in micromachined
wells", Sensors and Actuators B Chem., in press



