• Title/Summary/Keyword: Void Time

Search Result 340, Processing Time 0.027 seconds

The Partial Discharge Properties of Oxidized Polyethylene (산화된풀리에틸렌의 부분방전 특성)

  • 이현수;한상옥
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.802-808
    • /
    • 1992
  • To investigate degradation procedure and life time of the oxidized PE and the unoxidized PE, alternative voltage is applied to the CIGRE Method-II (CM-II) electrode system, which is loaded artificial void, and measures the distribution of partial discharging generation. From the results, the samples etched by oxidation had wide degradation area of dielectric strength. Furthermore, discharge starting voltage was shifted to low voltage, the discharge generation frequency was high and consequently, the quantity of mean charge becomes small. Also, life time of the oxdized sample is shortened according as the oxidation time is longer.

  • PDF

Hydration, Strength and pH Properties of Porous Concrete Using Rice Husk Ash

  • Kim, Young-Ik;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.51-60
    • /
    • 2007
  • This study was performed to evaluate void ratio, compressive and flexural strengths, and pH properties according to the content ratio of rice husk ash, aggregate size, and neutral treatment time of porous concrete with content of rice husk ash produced as an agricultural by-product. The SEM results for cement mortar with a 5% rice husk ash for the weight of cement formed more C-S-H hydrates due to the $SiO_2$ of rice husk ash. In the XRD test, cement mortar with a 5% rice husk ash for the weight of cement registered a higher peak point of approximately $2{\theta}=20{\sim}25^{\circ}$ compared to cement mortar without rice husk ash. According to the results of the XRD and SEM tests, the $SiO_2$ that was a major chemical element of rice husk ash generated a large amount of calcium hydroxide in the early stage of the hydration process of cement leading to the formation of ettringite. The void ratio of porous concrete with rice husk ash decreased with increasing content ratio of rice husk ash. In addition, the void ratio of porous concrete with rice husk ash decreased compared to porous concrete without rice husk ash. The compressive and flexural strength of porous concrete with a 5% and 10% content ratio of rice husk ash slightly increased compared to concrete without rice husk ash. The pH value of porous concrete rapidly decreased immediately after neutral treatment. Then, it gradually increased and decreased again after 14 days. However, the pH value was nearly the same regardless of neutral treatment time in 28 curing days. Also, for neutral treatment, the pH value of porous concrete showed appropriate pH levels (less than 9.5) in all mixtures for planting at 28 curing days.

Void-less Routing Protocol for Position Based Wireless Sensor Networks (위치기반 무선 센서 네트워크를 위한 보이드(void) 회피 라우팅 프로토콜)

  • Joshi, Gyanendra Prasad;JaeGal, Chan;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.29-39
    • /
    • 2008
  • Greedy routing which is easy to apply to geographic wireless sensor networks is frequently used. Greedy routing works well in dense networks whereas in sparse networks it may fail. When greedy routing fails, it needs a recovery algorithm to get out of the communication void. However, additional recovery algorithm causes problems that increase both the amount of packet transmission and energy consumption. Communication void is a condition where all neighbor nodes are further away from the destination than the node currently holding a packet and it therefore cannot forward a packet using greedy forwarding. Therefore we propose a VODUA(Virtually Ordered Distance Upgrade Algorithm) as a novel idea to improve and solve the problem of void. In VODUA, nodes exchange routing graphs that indicate information of connection among the nodes and if there exist a stuck node that cannot forward packets, it is terminated using Distance Cost(DC). In this study, we indicate that packets reach successfully their destination while avoiding void through upgrading of DC. We designed the VODUA algorithm to find valid routes through faster delivery and less energy consumption without requirement for an additional recovery algorithm. Moreover, by using VODUA, a network can be adapted rapidly to node's failure or topological change. This is because the algorithm utilizes information of single hop instead of topological information of entire network. Simulation results show that VODUA can deliver packets from source node to destination with shorter time and less hops than other pre-existing algorithms like GPSR and DUA.

Development of objective indicators for quantitative analysis of sodium intake: the sodium to potassium ratio of second-void urine is correlated with 24-hour urinary sodium excretion

  • Kim, Jung Gon;Han, Sang-Woong;Yi, Joo Hark;Park, Hyeong Cheon;Han, Sang Youb
    • Nutrition Research and Practice
    • /
    • v.14 no.1
    • /
    • pp.25-31
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: To date, sodium intake has been evaluated based on spot urine instead of 24-hour (hr) urine collection. Nevertheless, the optimal method for assessing daily sodium intake remains unclear. SUBJECTS/METHODS: Fifteen male (age 32.7 ± 6.5 years) participants were offered 3 meals with a total of 9-10 g salt over 24 hours, and 24-hr urine was collected from the second-void urine of the first day to the first-void urine of the second day. Twenty-four-hr urinary sodium (24UNa) was estimated using Tanaka's equation and the Korean formula, and spot urine Na, potassium (K), chloride (Cl), urea nitrogen (UN), creatinine (Cr), specific gravity (SG) and osmolality (Osm) were measured. The ratios of urinary Na to other parameters were calculated, and correlations with total measured 24UNa were identified. RESULTS: Average 24-hr urine volume was 1,403 ± 475 mL, and measured 24UNa was 143.9 ± 42.1 mEq (range, 87.1-239.4 mEq). Measured 24UNa was significantly correlated with urinary Na/UN (r = 0.560, P < 0.01), urinary Na/Osm (r = 0.510, P < 0.01), urinary Na/Cr (r = 0.392, P < 0.01), urinary Na/K (r = 0.290, P < 0.01), 24UNa estimated using Tanaka's equation (r = 0.452, P < 0.01) and the Korean formula (r = 0.414, P < 0.01), age (r = 0.548, P < 0.01), weight (r = 0.497, P < 0.01), and height (r = 0.393, P < 0.01) in all spot urine samples. Estimated 24UNa based on the second-void spot urine of the first day tended to be more closely correlated with measured 24UNa than were estimates from the other spot urine samples. The significant parameters correlated with the second-void urine of the first day were urinary Na/K (r = 0.647, P < 0.01), urinary Na/Cr (r = 0.558, P < 0.05), and estimated 24UNa using Tanaka's equation (r = 0.616, P < 0.05) and the Korean formula (r = 0.588, P < 0.05). CONCLUSIONS: Second-void urine is more reliable than first-void urine for estimating 24UNa. Urinary Na/K in the second-void urine on the first day is significantly correlated with 24UNa. Further studies are needed to establish the most reliable index and the optimal time of urine sampling for predicting 24UNa.

Elastic Wave Velocity of Jumunjin Sand Influenced by Saturation, Void Ratio and Stress (포화도, 간극비 및 응력에 따른 주문진사의 탄성파 속도)

  • Lee, Jung-Hwoon;Yun, Tae-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.101-106
    • /
    • 2014
  • The penetration testing provides 1 dimensional profiles of properties applicable to limited investigation areas, although N-value has been linked to a wide range of geotechnical design parameters based on empirical correlations. The nondestructive test using elastic waves is able to produce 2 or 3 dimensional property maps by inversion process with high efficiency in time and cost. As both N-value and elastic wave velocities share common dominant factors that include void ratio, degree of saturation, and in-situ effective stress, the correlation between the two properties has been empirically proposed by previous studies to assess engineering properties. This study presents the experimentally measured elastic wave velocities of Jumunjin sands under at-rest lateral displacement condition with varying the initial void ratio and degree of saturation. Results show that the stress condition predominantly influences the wave velocities whereas void ratio and saturation determine the stress-velocity tendency. The correlation among the dominant factors is proposed by multiple regression analysis with the discussion of relative impacts on parameters.

Void ratio and Strength Properties of Porous Concrete Utilizing Rice Husk Ash and Recycled Aggregate for Planting (식생 적용을 위한 왕겨재와 순환골재를 활용한 포러스 콘크리트의 공극률 및 강도 특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Korean Journal of Agricultural Science
    • /
    • v.33 no.2
    • /
    • pp.167-177
    • /
    • 2006
  • This study was performed to evaluate void ratio, compressive and flexural strength, and pH properties according to the admixture ratio of rice husk ash, aggregate size, and neutral treatment time of porous concrete with an admixture of rice husk ash produced as an agricultural by-product. The SEM results for cement mortar with a 5% rice husk ash admixture for the weight of cement formed more C-S-H hydrates due to the $SiO_2$ present in the applied rice husk ash. According to the results of the SEM test, the $SiO_2$ that was a major chemical element of rice husk ash generated a large amount of calcium hydroxide in the early stage of the hydration process of cement leading to the formation of ettringite. The void ratio of porous concrete with an admixture of rice husk ash decreased with increasing admixture ratio of rice husk ash. In addition, the void ratio of porous concrete with an admixture of rice husk ash decreased compared to porous concrete with no admixture of rice husk ash. The compressive and flexural strength of porous concrete with a 5% and 10% admixture ratio of rice husk ash slightly increased compared to concrete with no admixture of rice husk ash. The pH value of porous concrete rapidly decreased immediately after neutral treatment. Then, it gradually increased and decreased again after 14 days. Also, for neutral treatment, the pH value of porous concrete showed appropriate pH levels(less than 9.5) in all mixtures for planting at 28 curing days.

  • PDF

A Study on the Preocessing of high Runctional Composites and the Evaluation of Its Characteristics (고기능성 복합재료의 제조와 그 특성평가에 관한 연구)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.139-145
    • /
    • 1998
  • Filament winding method is widely used for composite fabrications using low viscosity liquid for-mation and processing asymmetrical structures of pressure vessel pipe rocket motor case etc. The filament winding method is affected by several parameters such as pot life of process time viscosi-ty of resin filament winding temperature and schedules curing condition and post curing condi-tion of resin. To develope high functional composite materials the rotation(5, 15, 20, 30rpm) of the winding machine was controlled by D.C motor. And the wiper to give proper tension was equipped between strand and resin bath. The resin is hooked by the design wiper. The adequate cure schedule was found by DSC. NOL ring test is carried out to investigate the basic physical properties such as design technology. The void contents in filament winding is generally higher than that of the prepreg laminated plate. These high contents of void can make a crack in resin in spite of low deformation. These problem was solved by giving tension in processing. To improve the characteristics of fiber volume fraction void contents resin/fiber bonding the winding speedc is changed under constant tension. It was found that resin impregnation was not different from in fiber contents void contents at the range of 0.5~1kg tension but it was found that resin was not impregnated at the above of 1.5kg tension. In burst test a pure PE liner was failed at a nozzle part under the $14kg/\textrm{cm}^2$ pressure but a pressure vessel of CNG was failed at a cylinder part under the $200kg/\textrm{cm}^2$ pressure.

  • PDF

Properties of Single Crystalline 3C-SiC Thin Films Grown with Several Carbonization Conditions (여러 탄화조건에 따라 성장된 단결정 3C-SiC 박막의 특성)

  • Shim, Jae-Cheol;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.837-842
    • /
    • 2010
  • This paper describes the crystallinity, growth rate, and surface morphology of single crystalline 3C-SiC (cubic silicon carbide) thin films grown with several carbonization conditions such as temperature, $C_3H_8$ flow rate, time. In case of carbonization, an increase in the carbonization temperature caused a increase in the size and numbers of unsealed void (big black spot) which decrease the crystallinity. In addition, optimal $C_3H_8$ flow rate made carbonization layer form well and prevented the formation of voids. Also, after a period of time, the growth of carbonization layer did not increase no more. The single crystalline 3C-SiC thin films on optimal carbonized Si substrate showed an improvement on the crystallinity, the growth rate, the roughness, and the carrier concentration.

Air Contents & Size Distribution of Air Voids in Concrete Using Image Analysis (이미지 분석에 의한 콘크리트의 공극 분포 및 공기량 분석)

  • Kwon, Hyouk-Chan;Jeong, Won-Kyong;Yun, Kyong-Ku
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.157-164
    • /
    • 2004
  • Air voids in hardened concrete have an important influence on concrete durability such as resistance of freezing and thawing, permeability and surface scaling resistance. Linear traverse method and point count method in ASTM standard method have been widely used to estimate the air void system in hardened concrete. However, these methods are not used at present time, because they are is exhausted much time and effort. In previous study, air voids system of concrete was estimated by spacing factor. The purpose of this study organizes image analysis method by analyzing air contents, air voids distributions by diameters, air voids system as well as spacing factors after hardened concrete. The experimental variables institute of depth of specimen(top, middle, bottom), air contents(AE contents 0, 0.01, 0.03%).

  • PDF

Strength Characteristics of Stabilized Dredged soil and Correlation with Index Properties

  • Kim, Yun-Tae;Do, Thanh-Hai;Kang, Hyo-Shup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.489-494
    • /
    • 2010
  • A geo-composite soil (GCS) is a stabilized mixture of bottom ash, cement and dredged soil. Various samples with different mass ratios of mixtures were tested under curing time of 7 and 28 days to investigate physical properties and compressive strength. This paper focused on the effect of bottom ash on the strength characteristics of Busan marine dredged soil. Cement has been added as an additive constituent to enhance self-hardening of the blended mixture. The unconfined compressive strength of GCS increases with an increase in curing time due to pozzolanic reaction of the bottom ash. The strength after 28 days of curing is found to be approximately 1.3 to 2.0 times the strength after 7 days of curing, regardless of mixture conditions. The secant modulus of GCS is in the range of 55 to 134 times the unconfined compressive strength. The correlation of unconfined compressive strength with bottom ash content and initial void ratio are suggested.

  • PDF