Abstract
This study was performed to evaluate void ratio, compressive and flexural strengths, and pH properties according to the content ratio of rice husk ash, aggregate size, and neutral treatment time of porous concrete with content of rice husk ash produced as an agricultural by-product. The SEM results for cement mortar with a 5% rice husk ash for the weight of cement formed more C-S-H hydrates due to the $SiO_2$ of rice husk ash. In the XRD test, cement mortar with a 5% rice husk ash for the weight of cement registered a higher peak point of approximately $2{\theta}=20{\sim}25^{\circ}$ compared to cement mortar without rice husk ash. According to the results of the XRD and SEM tests, the $SiO_2$ that was a major chemical element of rice husk ash generated a large amount of calcium hydroxide in the early stage of the hydration process of cement leading to the formation of ettringite. The void ratio of porous concrete with rice husk ash decreased with increasing content ratio of rice husk ash. In addition, the void ratio of porous concrete with rice husk ash decreased compared to porous concrete without rice husk ash. The compressive and flexural strength of porous concrete with a 5% and 10% content ratio of rice husk ash slightly increased compared to concrete without rice husk ash. The pH value of porous concrete rapidly decreased immediately after neutral treatment. Then, it gradually increased and decreased again after 14 days. However, the pH value was nearly the same regardless of neutral treatment time in 28 curing days. Also, for neutral treatment, the pH value of porous concrete showed appropriate pH levels (less than 9.5) in all mixtures for planting at 28 curing days.