• Title/Summary/Keyword: Void Time

Search Result 340, Processing Time 0.026 seconds

Simultaneous Biofiltration of H2S, NH3 and Toluene using an Inorganic/Polymeric Composite Carrier

  • Park, Byoung-Gi;Shin, Won-Sik;Chung, Jong-Shik
    • Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.19-27
    • /
    • 2008
  • Simultaneous removal of ternary gases of $NH_3$, $H_2S$ and toluene in a contaminated air stream was investigated over 180 days in a biofilter. A commercially available inorganic/polymeric composite chip with a large void volume (bed porosity > 0.80) was used as a microbial support. Multiple microorganisms including Nitrosomonas and Nitrobactor for nitrogen removal, Thiobacillus thioparus (ATCC 23645) for $H_2S$ removal and Pseudomonas aeruginosa (ATCC 15692), Pseudomonas putida (ATCC 17484) and Pseudomonas putida (ATCC 23973) for toluene removal were used simultaneously. The empty bed residence time (EBRT) ranged from 60 - 120 seconds and the inlet feed concentration was $0.0325\;g/m^3-0.0651\;g/m^3$ for $NH_3$, $0.0636\;g/m^3-0.141\;g/m^3$ for $H_2S$, and $0.0918\;g/m^3-0.383\;g/m^3$ for toluene, respectively. The observed removal efficiency was 2% - 98% for $NH_3$, 2% - 100% for $H^2S$, and 2% - 80% for toluene, respectively. Maximum elimination capacity was about $2.7\;g/m^3$/hr for $NH_3$, > $6.4\;g/m^3$/hr for $H_2S$ and $4.0\;g/m^3$/hr for toluene, respectively. The inorganic/polymeric composite carrier required 40 - 80 days of wetting time for biofilm formation due to the hydrophobic nature of the carrier. Once the surface of the carrier was completely wetted, the microbial activity became stable. During the long-term operation, pressure drop was negligible because the void volume of the carrier was two times higher than the conventional packing materials.

Analysis of RTM Process to Manufacture Composite Bogie Frame Considering Fiber Orientation (섬유방향성을 고려한 복합소재 대차 프레임의 RTM 성형 특성 해석)

  • Kim, Moo Sun;Kim, Jung-Seok;Kim, Seung Mo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.301-308
    • /
    • 2015
  • To reduce the weight of a railroad vehicle, a bogie frame skin is considered for manufacture using an RTM process and composite material. Compared to other processes, RTM has merits in that it demands only simple manufacturing facilities and can produce a large and complex structure in a short cycle time. On the other hand, it is important to determine the proper number and locations of gates and vents to prevent void formation inside a structure. In this study, we numerically predicted the flow pattern in a bogie frame skin during the RTM process by distinguishing the permeability of a fiber mat as isotropic or anisotropic. Using the results, we analyzed the RTM process conditions of the bogie frame to predict skin void formation, mold filling time, and optimum location of vents depending on the permeability conditions.

Development of Flexure Applied Bond head for Die to Wafer Hybrid Bonding (Die to Wafer Hybrid Bonding을 위한 Flexure 적용 Bond head 개발)

  • Jang, Woo Je;Jeong, Yong Jin;Lee, Hakjun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.171-176
    • /
    • 2021
  • Die-to-wafer (D2W) hybrid bonding in the multilayer semiconductor manufacturing process is one of wafer direct bonding, and various studies are being conducted around the world. A noteworthy point in the current die-to-wafer process is that a lot of voids occur on the bonding surface of the die during bonding. In this study, as a suggested method for removing voids generated during the D2W hybrid bonding process, a flexible mechanism for implementing convex for die bonding to be applied to the bond head is proposed. In addition, modeling of flexible mechanisms, analysis/design/control/evaluation of static/dynamics properties are performed. The proposed system was controlled by capacitive sensor (lion precision, CPL 290), piezo actuator (P-888,91), and dSpace. This flexure mechanism implemented a working range of 200 ㎛, resolution(3σ) of 7.276nm, Inposition(3σ) of 3.503nm, settling time(2%) of 500.133ms by applying a reverse bridge type mechanism and leaf spring guide, and at the same time realized a maximum step difference of 6 ㎛ between die edge and center. The results of this study are applied to the D2W hybrid bonding process and are expected to bring about an effect of increasing semiconductor yield through void removal. In addition, it is expected that it can be utilized as a system that meets the convex variable amount required for each device by adjusting the elongation amount of the piezo actuator coupled to the flexible mechanism in a precise unit.

Influence Analysis on the Number of Ruptured SG u-tubes During mSGTR in CANDU-6 Plants (중수로 증기발생기 다중 전열관 파단사고시 파단 전열관 수에 대한 영향 분석)

  • Seon Oh Yu;Kyung Won Lee
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.2
    • /
    • pp.37-42
    • /
    • 2022
  • An influence analysis on multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout is performed to compare the plant responses according to the number of ruptured u-tubes under the assumption of a total of 10 ruptured u-tubes. In all calculation cases, the transient behaviour of major thermal-hydraulic parameters, such as the discharge flow rate through the ruptured u-tubes, reactor header pressure, and void fraction in the fuel channels is found to be overall similar to that of the base case having a single SG with 10 u-tubes ruptured. Additionally, as the conditions of low-flow coolant with high void fraction in the broken loop continued, causing the degradation of decay heat removal, the peak cladding temperature (PCT) would be expected to exceed the limit criteria for ensuring nuclear fuel integrity. However, despite the same total number of ruptured u-tubes, because of the different connection configuration between the SG and pressurizer, a difference is foud in time between the pressurizer low-level signal and reactor header low-pressure signal, affecting the time to trip the reactor and to reach the PCT limit. The present study is expected to provide the technical basis for the accident management strategy for mSGTR transient conditions of CANDU-6 plants.

Effectiveness of a fast spin echo technique using the signal void in acquisition of black blood images (흑혈류영상 획득 시 신호소실을 활용한 고속스핀에코기법의 유용성)

  • Choi, Kwan-Woo;Kim, Yoon-Shin;Son, Soon-Yong;Lee, Hee-Ju;Min, Jung-Whan;Lee, Jong-Seok;Yoo, Beong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4313-4319
    • /
    • 2013
  • The purpose of our study is to shorten the scanning time and minimize the inconveniences of the patients in acquisition of the black blood images using the signal void effect in the fast spin echo technique while keeping the diagnostic value of the test. Thirty-two consecutive patients who underwent black blood MR imaging were examed with additional double inversion recovery (DIR) sequence and the conventional fast spin echo (FSE) sequence. Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) of the internal carotid arteries' lumen were compared in T1 and T2 weighted images to determine whether there are differences between the two techniques for depiction of the signal void effect inside the vessel wall. The FSE images showed lower SNR values than the DIR images in both of the T1 and T2 weighted images (11.49% and 13.66% respectively). While the CNR values were higher in the FSE images than in the DIR images in both of the T1 and T2 weighted images (8.69% and 7.55% respectively).There was no significant difference between the two techniques for either of the SNR or CNR (p>0.05, p>0.05 respectively). The DIR and the FSE images demonstrated almost identical imaging patterns. Therefore, it is anticipated that the use of FSE technique in acquisition of the black blood imaging could reduce the inconveniences of the patients during the scanning and minimize exam time while keeping the diagnostic value of the test.

Variations of Micro-Structures and Mechanical Properties of Ti/STS321L Joint Using Brazing Method (브레이징을 이용한 Ti/STS321L 접합체의 미세조직과 기계적 특성의 변화)

  • 구자명;정우주;한범석;권상철;정승부
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.106-106
    • /
    • 2002
  • This study investigated variations of micro-structures and mechanical properties of Ti / STS321L joint with various bonding temperature and time using brazing method. According to increasing bonding temperature and time, it was observed that the thickness of their reaction layer increased due So increasing diffusion rate and time. From the EPMA results, Ti diffused to the STS321L substrate according to increasing bending time to 30min. Hardness of bonded interface increased with increasing bonding temperature and time due to increasing their oxides and intermetallic compounds. XRD data indicated that Ag, Ag-Ti intermetallic compounds, TiAg and Ti₃Ag and titanium oxide, TiO₂were formed in interface. In tensile test, it was found that the tensile strength had a maximum value at the bonding temperature of 900℃ and time of 5min, and tensile strength decreased over bonding time of 5min. The critical thickness of intermetallic compounds was observed to about 30㎛, because of brittleness from their excessive intermetallic compounds and titanium oxide, and weakness from void.

Variations of Micro-Structures and Mechanical Properties of Ti/STS321L Joint Using Brazing Method (브레이징을 이용한 Ti/STS321L 접합체의 미세조직과 기계적 특성의 변화)

  • 구자명;정우주;한범석;권상철;정승부
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.830-837
    • /
    • 2002
  • This study investigated variations of micro-structures and mechanical properties of Ti / STS321L joint with various bonding temperature and time using brazing method. According to increasing bonding temperature and time, it was observed that the thickness of their reaction layer increased due So increasing diffusion rate and time. From the EPMA results, Ti diffused to the STS321L substrate according to increasing bending time to 30min. Hardness of bonded interface increased with increasing bonding temperature and time due to increasing their oxides and intermetallic compounds. XRD data indicated that Ag, Ag-Ti intermetallic compounds, TiAg and $Ti_3Ag$ and titanium oxide, $TiO_2$ were formed in interface. In tensile test, it was found that the tensile strength had a maximum value at the bonding temperature of $900^{\circ}C$ and time of 5min, and tensile strength decreased over bonding time of 5min. The critical thickness of intermetallic compounds was observed to about $30\mu\textrm{m}$, because of brittleness from their excessive intermetallic compounds and titanium oxide, and weakness from void.

Numerical study of anomaly detection under rail track using a time-variant moving train load

  • Chong, Song-Hun;Cho, Gye-Chun;Hong, Eun-Soo;Lee, Seong-Won
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.161-171
    • /
    • 2017
  • The underlying ground state of a railway plays a significant role in maintaining the integrity of the overlying concrete slab and ultimately supporting the train load. While effective nondestructive tests have been used to evaluate the rail track system, they can only be performed during non-operating time due to the stress wave generated by active sources. In this study, finite element numerical simulations are conducted to investigate the feasibility of detecting unfavorable substructure conditions by using a moving train load. First, a train load module is developed by converting the train load into time-variant equivalent forces. The moving forces based on the shape functions are applied at the nodes. A parametric study that takes into account the bonding state and the train class is then performed. All the synthetic signals obtained from numerical simulations are analyzed at the frequency domain using a Fast Fourier transform (FFT) and at the time-frequency domain using a Short-Time Fourier transform (STFT). The presence of a void condition amplifies the acceleration amplitude and the vibration response. This study confirms the feasibility of using a moving train load to systematically evaluate a rail track system.

A Study of Aging Characteristic of EPDM by High-temperature Treatment (고온 열처리에 의한 EPDM의 열화 특성에 대한 연구)

  • Choi, N.H.;Han, S.I.;Han, S.O.;Yoon, J.Y.;Park, K.S.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1465-1468
    • /
    • 1997
  • In this study we investigated the aging characteristic such as leakage current, dielectric loss, contact angle, of EPDM for outdoor use by thermal treatment. And also observed the color change of surface, changing of chemical ingredient of the marterials by optical microscope. SEMI, FTIR and EDX at the section and surface. The test result show that leakage current is increased with thermal aging time. contact angle and dielectric loss is slightly decreased. Moreover, micro-void or crack in bulk is severely increased with aging time. However, the result affect to the tan $\delta$ at bulk of EPDM. It seems that carrier sources are removed by degassing with heat treatment.

  • PDF

Fabrication of He-Ne ellipsometer and in-situ measurement of effective density variation of $TiO_2$thin films (보급형 He-Ne 타원해석기의 제작과 $TiO_2$ 박막 유효밀도 변화의 in-situ 측정)

  • 김상준;방현용;김상열
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.432-437
    • /
    • 1999
  • We have fabricated an in situ ellipsometer operating at He-Ne wavelength. It can be applied to the real-time, in-situ tracking of the ellisometric change which occurs during various sample treatments. As a rotating analyzer type, all optical elements and related parts are designed to share a common hollow-axis configuration, and hence the ellipsometer is compact in shape and simple in design. It is mountable on the spare ports of vacuum chamber with ease. Using this ellipsometer, we observed the effective density variation of previously grown $TiO_2$ thin films by using electron beam evaporation. The packing density of the as-grown film was 82%. When exposed to atomsphere, the micro-void of the film was filled with water vapor. This water-filled $TiO_2$ thin film was subject to heating/cooling cycles in vacuum and the ellipsometric variation versus temperature and cycling number was measured in real time using this in situ He-Ne ellipsometer.

  • PDF