DOI QR코드

DOI QR Code

Analysis of RTM Process to Manufacture Composite Bogie Frame Considering Fiber Orientation

섬유방향성을 고려한 복합소재 대차 프레임의 RTM 성형 특성 해석

  • Received : 2015.02.16
  • Accepted : 2015.06.12
  • Published : 2015.08.31

Abstract

To reduce the weight of a railroad vehicle, a bogie frame skin is considered for manufacture using an RTM process and composite material. Compared to other processes, RTM has merits in that it demands only simple manufacturing facilities and can produce a large and complex structure in a short cycle time. On the other hand, it is important to determine the proper number and locations of gates and vents to prevent void formation inside a structure. In this study, we numerically predicted the flow pattern in a bogie frame skin during the RTM process by distinguishing the permeability of a fiber mat as isotropic or anisotropic. Using the results, we analyzed the RTM process conditions of the bogie frame to predict skin void formation, mold filling time, and optimum location of vents depending on the permeability conditions.

철도차량의 경량화 일환으로 대차 프레임 스킨제작에 복합소재를 적용하여 RTM 기법으로 제조하는 방안을 검토하였다. RTM 기법은 공정설비의 단순화 및 복잡한 형상의 대형 구조물을 짧은 시간에 제조할 수 있는 장점이 있다. RTM 공정에서는 구조물에 기공이 갇힐 수 있기 때문에 수지 주입구와 배출구의 개수 및 위치 선정이 중요하다. 이번 연구에서는 섬유 프리폼의 투과성 계수를 등방성과 이방성 특성으로 구분하여 RTM 성형특성을 수치해석을 통해 예측하였다. 그로부터 투과성 계수에 따른 기공 형성과 성형 시간의 예측 및 수지 배출구의 최적 위치 등 공정조건을 선정하기 위한 대차 프레임 스킨의 RTM 성형 충전패턴을 분석하였다.

Keywords

References

  1. D. Henry (1856) Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris, pp. 1-647.
  2. B.R Gebert (1992) Permeability of unidirectional reinforcements for RTM, Journal of Composite Materials, 26(8), pp. 1100-1133. https://doi.org/10.1177/002199839202600802
  3. P.K. Mallick (2008) Fiber-reinforced composites : Materials, Manufacturing, and Design, CRC Press, Boca Raton, pp. 377-449.
  4. M.K. Kang, W.I. Lee, H.T. Hahn (2000) Formation of microvoids during resin-transfer molding process, Composites Science and Technology, 60, pp.2427-2434. https://doi.org/10.1016/S0266-3538(00)00036-1
  5. T.S. Lundstrom, B.R. Gebart, C.Y. Lundemo (1993) Void formation in RTM, Journal of Reinforced Plastics & Composites, 12(12), pp. 1339-1349. https://doi.org/10.1177/073168449301201207
  6. R. Mathur, B.K. Fink, S.G. Advani (1999) Use of genetic algorithms to optimize gate and vent locations for the resin transfer molding process, Polymer Composites, 20(2), pp. 167-178. https://doi.org/10.1002/pc.10344
  7. A. Boccard, W.I. Lee, G.S. Springer (1995) Model for determining the vent locations and the fill time of resin transfer molds, Journal of Composite Materials, 29(3), pp. 306-333. https://doi.org/10.1177/002199839502900302
  8. S. Jiang, C. Zhang, B. Wang (2002) Optimum arrangement of gate and vent locations for RTM process design using a mesh distance-based approach, Composites: Part A, 33, pp. 471-481.
  9. K. Okonkwo (2010) 3D permeability characterization of fibrous media, MS Thesis, University of Delaware.
  10. J.S. Kim, W.G. Lee (2012) Manufacturing and structural behavior evaluation of composite side beams using autoclave curing and resin transfer moulding method, International Journal of Precision Engineering and Manufacturing, 13(5), pp. 723-730. https://doi.org/10.1007/s12541-012-0094-3
  11. I.K. Kim, J.S. Kim, S.I. Seo, W.G. Lee (2013) Dynamic property evaluation of four-harness satin woven glass/epoxy composites for a composite bogie frame, Journal of the Korean Society for Railway, 16(1), pp. 1-6. https://doi.org/10.7782/JKSR.2013.16.1.001
  12. P.C. Carman (1956) Flow of gases through porous media, Butterworths, London, pp. 1-33.
  13. M.K. Kang (1997) A numerical and experimental study on mold filling and void formation during resin transfer molding, Ph.D Thesis, Seoul National University.