• Title/Summary/Keyword: Void Rate

Search Result 264, Processing Time 0.03 seconds

Outcome of 980 nm diode laser vaporization for benign prostatic hyperplasia: A prospective study

  • Mithani, M. Hammad;El Khalid, Salman;Khan, Shariq Anis;Sharif, Imran;Awan, Adnan Siddiq;Mithani, Shoaib;Majeed, Irfan
    • Investigative and Clinical Urology
    • /
    • v.59 no.6
    • /
    • pp.392-398
    • /
    • 2018
  • Purpose: To evaluate the initial experience and outcome of photo-selective vaporization of the prostate (PVP) for benign prostatic hyperplasia (BPH) in Pakistan with the use of a 980 nm diode laser. Materials and Methods: A prospective study was performed from November 2016 to December 2017. A total of 100 patients diagnosed with bladder outlet obstruction secondary to BPH who planned for PVP were enrolled in the study. PVP was carried out with a diode laser at 980 nm (Biolitec Diode 180W laser) in a continuous wave with a 600 nm (twister) fiber. Baseline characteristics and perioperative data were compared. Postoperative outcomes were evaluated by International Prostate Symptom Score (IPSS), post void residual (PVR) and maximum urinary flow rate (Qmax) at 3 and 6 months after surgery. Results: The mean age was $65.82{\pm}10.42$, mean prostate size was $67.35{\pm}16.42$, operative time was $55.85{\pm}18.01$ and total energy was $198.68{\pm}49.12kJ$. At 3 months and 6 months, significant improvements were noted (p<0.001) in IPSS $7.04{\pm}1.69$ (-18.92), Qmax $19.22{\pm}4.75mL/s$ (+13.09) and and PVR $18.89{\pm}5.39mL$ (-112.80). Most frequent problems were burning micturition (35%) and terminal dysuria (29%). No significant difference in postoperative hemoglobin was seen in patients who were on anti-platelet drugs. Conclusions: PVP with a diode laser is a safe and effective procedure for the treatment of BPH and is also safe in patients who are on anti-platelet agents.

Optimization and modification of PVDF dual-layer hollow fiber membrane for direct contact membrane distillation; application of response surface methodology and morphology study

  • Bahrami, Mehdi;Karimi-Sabet, Javad;Hatamnejad, Ali;Dastbaz, Abolfazl;Moosavian, Mohammad Ali
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2241-2255
    • /
    • 2018
  • RSM methodology was applied to present mathematical models for the fabrication of polyvinylidene fluoride (PVDF) dual-layer hollow fibers in membrane distillation process. The design of experiments was used to investigate three main parameters in terms of polymer concentration in both outer and inner layers and the flow rate of dope solutions by the Box-Behnken method. According to obtained results, the optimization was done to present the proper membrane with desirable properties. The characteristics of the optimized membrane (named HF-O) suggested by the Box-Behnken (at the predicted point) showed that the proposed models are strongly valid. Then, a morphology study was done to modify the fiber by a combination of three types of a structure such as macro-void, sponge-like and sharp finger-like. It also improved the hydrophobicity of outer surface from 87 to $113^{\circ}$ and the mean pore size of the inner surface from 108.12 to 560.14 nm. The DCMD flux of modified fiber (named HF-M) enhanced 62% more than HF-O when it was fabricated by considering both of RSM and morphology study results. Finally, HF-M was conducted for long-term desalination process up to 100 hr and showed stable flux and wetting resistance during the test. These stepwise approaches are proposed to easily predict the main properties of PVDF dual-layer hollow fibers by valid models and to effectively modify its structure.

Design and Fabrication of Rogowski-type Partial Discharge Sensor for Insulation Diagnosis of Cast-Resin Transformers (몰드 변압기의 절연 진단을 위한 로고우스키형 부분방전 센서의 설계 및 제작)

  • Lee, Gyeong-Yeol;Kim, Sung-Wook;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.594-602
    • /
    • 2022
  • Cast-resin transformers are widely installed in various electrical power systems because of their low operating cost and low influence on external environmental factors. However, when they have an internal defect during the manufacturing process or operation, a partial discharge (PD) occurs, and eventually destroys the insulation. In this paper, a Rogowski-type PD sensor was studied to replace commercial PD sensors used for the insulation diagnosis of power apparatus. The proposed PD sensor was manufactured with four different types of PCB-based winding structures, and it was analyzed in terms of the detection characteristics for standard calibration pulses and the changes of the output voltage according to the distance. The output increased linearly in accordance with the applied discharge amount. It was confirmed that the hexagon structure sensor had the highest sensitivity, because the winding cross-sectional area of the sensor was larger than others. In addition, as the distance from the defect increased, the output voltage of the sensors decreased by 7.32% on average. It was also confirmed that the attenuation rate according to the distance decreased as the input discharge amount increased. For the application of this new type sensor, PD electrode system was designed to simulate the void defect. Waveforms and PRPD patterns measured by the proposed PD sensors at DIV and 120% of DIV were the same as the results measured by MPD 600 based on IEC 60270. The proposed PD sensors can be installed on the inner wall of the transformer tank by coating its surfaces with a non-conductive material; therefore, it is possible to detect internal defects more effectively at a closer distance from the defect than the conventional sensors.

Frost-Heaving Characteristics of Soil Mixed with Discarded Tire Powder (폐타이어 파우더 혼합토의 동상 특성)

  • Kim, Hak-Sam;Seo, Sang-Youl;Nakamura, Dai;Fukuda, Masami;Yamashita, Satoshi;Suzuki, Teruyuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.15-26
    • /
    • 2010
  • To determine the frost heave suppressing mechanism of soil mixed with tire powder, we conducted three kinds of laboratory experiments: measurement of unfrozen water, evaluation of thermal conductivity, and a frost heave. In this research, we focused on changes in the coefficient of permeability of the mixed soil, and first found that of the unsaturated soil. Next, in the case of the presence of ice, we took the ice-impeding factor into consideration to derive the coefficient of permeability of the frozen fringe from the area ratio of the soil and tire powder in mixed soil. The results show a positive correlation between the water intake rate and the coefficient of permeability. Moreover, we found that the frost heave decreased thanks to a reduction in the permeability and a fall in the unfrozen water content of the soil mixed with tire powder. We also calculated the weight of the water content of the soil and tire powder void quantitatively using the result of the volumetric ratio of mixed soil.

Prediction of Various Properties of Soft Ground Soils using Artificial Neural Network (인공신경망을 이용한 연약지반의 지반설계정수 예측)

  • Kim, Young Su;Jeong, Woo Seob;Jeonge, Hwan Chul;Im, An Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.81-88
    • /
    • 2006
  • This study performed field and laboratory tests for poor subsoils taken in six regions of the country and determined undrain shear strength. Su values and preconsolidation pressure are predicted using Back Propagation neural network (BPNN) and the application of BPNN is verified. The result of BPNN shows that correlation coefficient between test and neural network result is over 0.9, which means high correlativity. Especially the neural network uses only 6 parameters such as natural water content, void ratio, specific gravity, rate of passing 200th sieve, liquid limits and plasticity index among various affecting factors to estimate value and the correlation coefficent is 0.93. The conclusions obtained in this paper are from the tests performed for poor subsoils taken in the several regions of the country. If there were more test results, the prediction and influence of various soil properties could be effectively performed by neural network.

Comparison of Resin Impregnation and Mechanical Properties of Composites Based on Fiber Plasma Treatment (섬유 플라즈마 처리에 따른 복합재료의 수지 함침성 및 기계적 특성 비교)

  • Seong Baek Yang;Donghyeon Lee;Yongseok Lee;Dong-Jun Kwon
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.388-394
    • /
    • 2023
  • In composites manufacturing, increasing resin impregnation is a key way to speed up the manufacturing process and improve product quality. While resin improvement is important, simple fiber surface treatments can also improve resin flowability. In this study, different plasma treatment times were applied to carbon fiber fabrics to improve the impregnation between resin and fiber. Electrical resistivity measurements were used to evaluate the dispersion of resin in the fibers, which changed with plasma treatment. The effect of fiber surface treatment on resin spreadability could be observed in real time. When inserting a carbon fiber tow into the resin, the amount of resin that soaked into the tow was measured to objectively compare resin impregnation. Five minutes of plasma treatment improved the tensile and compressive strength of the composite by more than 50%, while reducing the void content and increasing the fire point impregnation flow rate. Finally, a dynamic flexural fatigue test was conducted using a portion of the composite used as an architectural composite part, and the composite part did not fail after one million cycles of a 3 kN load.

Nitrite Accumulation Characteristics According to Hydraulic Retention Time and Aeration Rate in a Biological Aerated Filter (생물여과 반응기에서 수리학적 체류시간 및 폭기량에 따른 아질산 축적 특성)

  • Yoon, Jong Moon;Kim, Dong Jin;Yoo, Ik-Keun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.200-206
    • /
    • 2006
  • In a biological aerated filter (BAF) packed with ceramic media (void fraction of BAF=0.32), nitrite accumulation was studied with the variation of hydraulic retention time (HRT) and superficial air velocity. Synthetic ammonium wastewater and petrochemical wastewater were fed at a constant load of $1.6kgNH_4^+-N/m^3{\cdot}d$. Ammonium removal rate was mainly affected by the superficial air velocity in BAF, but nitrite ratio($NO_2-N/NO_x-N$) in the effluent was dependent on both HRT and superficial air velocity. For a fixed HRT of 0.23 hr (corresponding to the empty bed contact time of 0.7 hr) ammonium removal rate was 73/90/92% and nitrite ratio was 0.92/0.82/0.48 at the superficial air velocity of 0.23/0.45/0.56 cm/s, respectively. When HRT is increased to 0.9 hr with superficial air velocity ranging from 0.34 to 0.45 cm/s, the ammonium removal rate was 89% on average. However nitrite ratio decreased significantly down to 0.13. When HRT was further increased to 1.4 hr, ammonium removal rate decreased, thereby resulting in the free ammonia ($NH_3-N$, FA) build-up and nitrite ratio gradually increased (>0.95). Although aeration rate and FA concentration at HRT of 0.23 hr were unfavorable for nitrite accumulation compared with those at HRT of 0.9 hr, nitrite ratio at HRT of 0.23 hr was higher. Taken together, HRT and nitrogen load were found to be critical, in addition to FA concentration and aeration condition, for nitrite accumulation in the BAF tested in the present study.

High Speed Direct Bonding of Silicon Wafer Using Atmospheric Pressure Plasma (상압 플라즈마를 이용한 고속 실리콘 웨이퍼 직접접합 공정)

  • Cha, Yong-Won;Park, Sang-Su;Shin, Ho-Jun;Kim, Yong Taek;Lee, Jung Hoon;Suh, Il Woong;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.31-38
    • /
    • 2015
  • In order to achieve a high speed and high quality silicon wafer bonding, the room-temperature direct bonding using atmospheric pressure plasma and sprayed water vapor was developed. Effects of different plasma fabrication parameters, such as flow rate of $N_2$ gas, flow rate of CDA (clear dry air), gap between the plasma head and wafer surface, and plasma applied voltage, on plasma activation were investigated using the measurements of the contact angle. Influences of the annealing temperature and the annealing time on bonding strength were also investigated. The bonding strength of the bonded wafers was measured using a crack opening method. The optimized condition for the highest bonding strength was an annealing temperature of $400^{\circ}C$ and an annealing time of 2 hours. For the plasma activation conditions, the highest bonding strength was achieved at the plasma scan speed of 30 mm/sec and the number of plasma treatment of 4 times. After optimization of the plasma activation conditions and annealing conditions, the direct bonding of the silicon wafers was performed. The infrared transmission image and the cross sectional image of bonded interface indicated that there is no void and defects on the bonded wafers. The bonded wafer exhibited a bonding strength of average $2.3J/m^2$.

Studies on Cu Dual-damascene Processes for Fabrication of Sub-0.2${\mu}m$ Multi-level Interconnects (Sub-0.2${\mu}m$ 다층 금속배선 제작을 위한 Cu Dual-dmascene공정 연구)

  • Chae, Yeon-Sik;Kim, Dong-Il;Youn, Kwan-Ki;Kim, Il-Hyeong;Rhee, Jin-Koo;Park, Jang-Hwan
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.12
    • /
    • pp.37-42
    • /
    • 1999
  • In this paper, some of main processes for the next generation integrated circuits, such as Cu damascene process using CMP, electron beam lithography, $SiO_2$ CVD and RIE, Ti/Cu-CVD were carried cut and then, two level Cu interconnects were accomplished. In the results of CMP unit processes, a 4,635 ${\AA}$/min of removal rate, a selectivity of Cu : $SiO_2$ of 150:1, a uniformity of 4.0% are obtained under process conditions of a head pressure of 4 PSI, table and head speed of 25rpm, a oscillation distance of 40 mm, and a slurry flow rate of 40 ml/min. Also 0.18 ${\mu}m\;SiO_2$ via-line patterns are fabricated using 1000 ${\mu}C/cm^2$ dose, 6 minute and 30 second development time and 1 minute and 30 second etching time. And finally sub-0.2 ${\mu}$ twolevel metal interconnects using the developed processes were fabricated and the problems of multilevel interconnects are discussed.

  • PDF

A Study on the Analysis of the Error Rate of Mixed Mortar Panel for Implementation Free-form Shape (비정형 형상구현을 위한 혼합모르타르 패널의 오차율 분석 연구)

  • Oh, Young-Geun;Jeong, Kyeong-Tae;Lee, Dong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.155-162
    • /
    • 2020
  • Since the third industrial revolution has been started in the 1980s, the form of buildings has been varied and atypical by the development of building technology. Such free-form building has a curved shape unlike the existing standard buildings, and to realize this, it is necessary to manufacture the free-from panel. The shape of the free-form panel must satisfy a limited error ratio compared with the design shape, and the technology to produce free-form panels is very difficult. However, there are many problems such as enormous cost and construction waste generation when implementing free-from construction. Therefore, the development of free-form panel manufacturing technology should be made to solve the problems caused by the free-form construction. In this study, the error rate analysis of the mixed mortar panel was conducted by selecting the proper mixing ratio of the mixed mortar for the shape of the free-form panel.