본 연구는 영어 편지 글에 나타난 자신의 표현, 수사 형태, 그리고 작문 활동을 중심으로 한국 대학생의 서면 텍스트의 특성을 살펴보는 것을 목적으로 한다. 자료로는 학생들의 영어 취업지원서를 포함하였으며, 분석을 위해 '목적-의지' 모델을 채택하였다. 연구 결과, 학생들은 재설정된 상황에서 글 쓰는 이로서의 자신을 표현하기 위해 독특한 전략을 사용하였다. 취업 지원을 위한 편지 속 학생들의 표현 방법은 매우 다양하였고, 어느 누구도 날씨를 언급하는 한국식 편지 쓰기 방식을 채택하지 않았다. 수사 형태는 정형화된 형식에서 벗어나 다양성과 통합된 모습을 보여주었다. 작문 활동을 통해 학생들은 글 쓰는 이로서의 고유한 내적 가치를 보여주었으며, 이는 곧 학생들의 작문 결과가 교수자의 강의 내용과 동일한 모습으로 나타나지 않는다는 것을 의미한다. 이러한 결과는 학습은 특정 담화 공동체 내에서의 상황 활동이라는 사회 문화 이론을 뒷받침한다. 그러므로 영작문 교수자는 학생들의 삶과 학습 경험이 텍스트 속 정체성과 작문 활동에 영향을 미친다는 사실을 인지하고 지도해야 한다.
본 논문에서는 음성 게시판을 활용한 판소리 학습 방법을 제시하고, 제시된 판소리 학습 방법에 대한 효과를 질적 연구 방법을 통하여 분석하였다. 참여관찰, 면담, 학습 장면에 대한 비디오 분석 등의 질적 접근 방법을 통한 자료 분석 결과에 따르면, 제안된 음성 게시판을 활용한 학습 방법은 학생들의 판소리에 대한 흥미와 관심을 유발시킬 수 있을 뿐만 아니라, 국악에 대한 지속적인 관심을 유도할 수 있는 가능성을 볼 수 있었다.
Text classification is one of the popular tasks in Natural Language Processing (NLP) used to classify text or document applications such as sentiment analysis and email filtering. Nowadays, state-of-the-art (SOTA) Machine Learning (ML) and Deep Learning (DL) algorithms are the core engine used to perform these classification tasks with high accuracy, and they show satisfying results. This paper conducts a benchmarking performance's analysis of multiple SOTA algorithms on the first known labeled Korean voice phishing dataset called KorCCVi. Experimental results reveal performed on a test set of 366 samples reveal which algorithm performs the best considering the training time and metrics such as accuracy and F1 score.
본 연구는 유선통신 서비스 상품별 고객 불만(Voice of Customer) 감소에 따른 학습곡선을 추정 하고자 한다. 학습곡선모형 중 가장 일반적인 지수감소모형(Exponential decay model)을 사용하여 시간에 따라 고객 불만(VOC)이 감소하는지를 검증하였다. 그리고 통신사들의 서비스 상품의 인력투입, 소프트웨어 적용, 투자 등의 노력에 따른 고객 불만(VOC) 변화효과를 추가로 검증하였다. 서비스 상품별 실증 분석의 결과는 다음과 같다. 첫째, 학습곡선대로 시간에 따라 고객 불만(VOC)이 감소하였다. 둘째, 초고속 인터넷, 전화, IPTV 등은 인력투입, Network 장애, 계절요인으로 인해 고객 불만(VOC)을 증가 시키거나 감소 시켰다. 셋째, 서비스 상품별 다양한 변수는 고객의 체감 품질을 높이고 있지만, 오히려 지속적으로 감소하지 않는 서비스 패러독스(Service Paradox)현상이 발생하는 것을 알 수 있었다.
본 논문은 후두 장애음성 데이터의 식별률을 CNN과 기계학습 앙상블 학습 방법에 의해 개선하는 방법에 대한 연구이다. 일반적으로 후두 장애음성 데이터는 그 수가 적으므로 통계적 방법에 의해 식별기가 구성되더라도, 훈련 방식에 따라 과적합으로 인해 일어나는 현상으로 인해 외부 데이터에 노출될 시 식별률의 저하가 발생할 수 있다. 본 연구에서는 다양한 정확도를 갖도록 훈련된 CNN 모델과 기계학습 모델로부터 도출된 결과를 다중 투표 방식으로 결합하여 원래의 훈련된 모델에 비해 향상된 분류 효율을 갖도록 하는 방법과 함께, 기존의 기계학습 중 앙상블 방법을 적용해 보고 그 결과를 확인하였다. 알고리즘을 훈련하고 검증하기 위해 PNUH(Pusan National University Hospital) 데이터셋을 이용하였다. 데이터셋에는 정상음성과 양성종양 및 악성 종양의 음성 데이터가 포함되어 있다. 실험에서는 정상 및 양성 종양과 악성종양을 구분하는 시도를 하였다. 실험결과 random forest 방법이 가장 우수한 앙상블 방법으로 나타났으며 85%의 식별률을 보였다.
We propose a new approach to control a biped robot motion based on iterative learning of voice command for the implementation of smart factory. The real-time processing of speech signal is very important for high-speed and precise automatic voice recognition technology. Recently, voice recognition is being used for intelligent robot control, artificial life, wireless communication and IoT application. In order to extract valuable information from the speech signal, make decisions on the process, and obtain results, the data needs to be manipulated and analyzed. Basic method used for extracting the features of the voice signal is to find the Mel frequency cepstral coefficients. Mel-frequency cepstral coefficients are the coefficients that collectively represent the short-term power spectrum of a sound, based on a linear cosine transform of a log power spectrum on a nonlinear mel scale of frequency. The reliability of voice command to control of the biped robot's motion is illustrated by computer simulation and experiment for biped walking robot with 24 joint.
다양한 모바일 기기의 보급 확산으로 u러닝 기반의 학습 관리 시스템의 연구가 활발히 진행 되고 있다. u-러닝 기반의 학습 관리 시스템은 콘텐츠 사용자의 접근 시간과 장소 그리고 다양한 접근 기기에 대한 제약이 없다는 점에서 매우 편리하다. 그러나 사용자에 대한 접근의 인증과 학습에 대한 집중 여부에 대한 판단이 매우 어렵다. 본 논문은 일반적인 사용자 이벤트 중심의 인터페이스가 아닌 음성과 사용자 안면 캡춰 인터페이스를 학습 관리 시스템에 적용 하였다. 사용자가 학습 관리 시스템에 접근 시 등록된 본인의 패스워드를 음성 입력하여 로그인 하고, 사용자가 콘텐츠를 통해 학습이 진행 되는 과정에서도 간단한 단어의 응답 발화를 통해 사용자의 학습 태도 및 학습 성과를 판단하게 한다. 제안된 학습 관리 시스템의 평가 결과 사용자의 학습 성취도와 집중도가 향상 되었으며 이에 따른 사용자의 비정상적인 학습태도에 대한 관리자의 모니터링을 가능 하게 했다.
본 논문에서는 사람을 대신하여 분류, 예측 하는 딥러닝 기술을 활용하여 목소리를 통해 남녀노소를 분류하는 연구를 수행한다. 연구과정은 기존 신경망 기반의 사운드 분류 연구를 살펴보고 목소리 분류를 위한 개선된 신경망을 제안한다. 기존 연구에서는 도시 데이터를 이용해 사운드를 분류하는 연구를 진행하였으나, 얕은 신경망으로 인한 성능 저하가 나타났으며 다른 소리 데이터에 대해서도 좋은 성능을 보이지 못했다. 이에 본 논문에서는 목소리 데이터를 전처리하여 특징값을 추출한 뒤 추출된 특징값을 기존 사운드 분류 신경망과 제안하는 신경망에 입력하여 목소리를 분류하고 두 신경망의 분류 성능을 비교 평가한다. 본 논문의 신경망은 망을 더 깊고 넓게 구성함으로써 보다 개선된 딥러닝 학습이 이루어지도록 하였다. 성능 결과로는 기존 연구와 본 연구의 신경망에서 각각 84.8%, 91.4%로 제안하는 신경망에서 약 6% 더 높은 정확도를 보였다.
For effective human-robot interaction, robots need to understand the current situation context well, but also the robots need to transfer its understanding to the human participant in efficient way. The most convenient way to deliver robot's understanding to the human participant is that the robot expresses its understanding using voice and natural language. Recently, the artificial intelligence for video understanding and natural language process has been developed very rapidly especially based on deep learning. Thus, this paper proposes robot vision to audio description method using deep learning. The applied deep learning model is a pipeline of two deep learning models for generating natural language sentence from robot vision and generating voice from the generated natural language sentence. Also, we conduct the real robot experiment to show the effectiveness of our method in human-robot interaction.
인간의 목소리는 사람간의 정보 전달을 위한 가장 쉬운 방법 중 하나이다. 음성의 특징은 사람마다 다를 수 있으며 발성 속도, 발성기관의 형태와 기능, 피치 톤, 언어 습관 및 성별에 따라 다르게 나타난다. 목소리는 사람의 의사소통 핵심 요소이다. 제 4 차 산업 혁명의 시대에 목소리는 사람과 사람, 사람과 기계, 기계 와 기계 사이의 주요한 의사소통 수단이 된다. 그 이유 때문에 사람들은 자신의 의도를 다른 사람들에게 명확하게 전달하려고 노력한다. 그리고 이 과정에서 목소리는 언어 정보와 함께 다양한 추가 정보가 포함되게 된다. 예를 들어 감정 상태, 건강 상태, 신뢰도와 관련되거나, 거짓말의 여부, 음주로 인한 목소리의 변화 등 다양한 언어 및 비언어 정보를 포함하며, 다양한 분석 파라미터로 나타나게 된다. 이를 활용하면 개인의 신용도를 평가하는 척도로 사용할 수 있다. 특히 성대의 기본 주파수의 특성과 성도의 공진 주파수 특성의 관계를 분석함으로써 얻을 수 있다. 이전의 연구에서 다양한 신용 상태의 변화에 따른 목소리 분석 및 특성 변화를 연구 하였다. 본 연구에서는 음성을 통해 추출 된 매개 변수를 통해 기계 학습을 통한 개인 신용 판별 기를 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.