• 제목/요약/키워드: Voice learning

검색결과 276건 처리시간 0.029초

텍스트 속 자신의 표현: 영어 편지글에 나타난 수사 형태와 작문 활동에 관한 탐색 (Written Voice in the Text: Investigating Rhetorical Patterns and Practices for English Letter Writing)

  • 이영화
    • 한국콘텐츠학회논문지
    • /
    • 제20권3호
    • /
    • pp.432-439
    • /
    • 2020
  • 본 연구는 영어 편지 글에 나타난 자신의 표현, 수사 형태, 그리고 작문 활동을 중심으로 한국 대학생의 서면 텍스트의 특성을 살펴보는 것을 목적으로 한다. 자료로는 학생들의 영어 취업지원서를 포함하였으며, 분석을 위해 '목적-의지' 모델을 채택하였다. 연구 결과, 학생들은 재설정된 상황에서 글 쓰는 이로서의 자신을 표현하기 위해 독특한 전략을 사용하였다. 취업 지원을 위한 편지 속 학생들의 표현 방법은 매우 다양하였고, 어느 누구도 날씨를 언급하는 한국식 편지 쓰기 방식을 채택하지 않았다. 수사 형태는 정형화된 형식에서 벗어나 다양성과 통합된 모습을 보여주었다. 작문 활동을 통해 학생들은 글 쓰는 이로서의 고유한 내적 가치를 보여주었으며, 이는 곧 학생들의 작문 결과가 교수자의 강의 내용과 동일한 모습으로 나타나지 않는다는 것을 의미한다. 이러한 결과는 학습은 특정 담화 공동체 내에서의 상황 활동이라는 사회 문화 이론을 뒷받침한다. 그러므로 영작문 교수자는 학생들의 삶과 학습 경험이 텍스트 속 정체성과 작문 활동에 영향을 미친다는 사실을 인지하고 지도해야 한다.

음성 게시판을 활용한 판소리 학습 효과에 대한 질적 연구 (A Qualitative Study on Pansori Learning Using Voice Bulletin Board System)

  • 강의성;정유화
    • 정보교육학회논문지
    • /
    • 제6권3호
    • /
    • pp.308-316
    • /
    • 2002
  • 본 논문에서는 음성 게시판을 활용한 판소리 학습 방법을 제시하고, 제시된 판소리 학습 방법에 대한 효과를 질적 연구 방법을 통하여 분석하였다. 참여관찰, 면담, 학습 장면에 대한 비디오 분석 등의 질적 접근 방법을 통한 자료 분석 결과에 따르면, 제안된 음성 게시판을 활용한 학습 방법은 학생들의 판소리에 대한 흥미와 관심을 유발시킬 수 있을 뿐만 아니라, 국악에 대한 지속적인 관심을 유도할 수 있는 가능성을 볼 수 있었다.

  • PDF

머신러닝 기법을 이용한 한국어 보이스피싱 텍스트 분류 성능 분석 (Korean Voice Phishing Text Classification Performance Analysis Using Machine Learning Techniques)

  • 무사부부수구밀란두키스;진상윤;장대호;박동주
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.297-299
    • /
    • 2021
  • Text classification is one of the popular tasks in Natural Language Processing (NLP) used to classify text or document applications such as sentiment analysis and email filtering. Nowadays, state-of-the-art (SOTA) Machine Learning (ML) and Deep Learning (DL) algorithms are the core engine used to perform these classification tasks with high accuracy, and they show satisfying results. This paper conducts a benchmarking performance's analysis of multiple SOTA algorithms on the first known labeled Korean voice phishing dataset called KorCCVi. Experimental results reveal performed on a test set of 366 samples reveal which algorithm performs the best considering the training time and metrics such as accuracy and F1 score.

통신 상품별 VOC 영향 요인과 학습곡선에 관한 연구 (A Study on the Learning Curve and VOC Factors Affecting of Telecommunication Services)

  • 정소기;차경천
    • 한국통신학회논문지
    • /
    • 제39B권8호
    • /
    • pp.518-527
    • /
    • 2014
  • 본 연구는 유선통신 서비스 상품별 고객 불만(Voice of Customer) 감소에 따른 학습곡선을 추정 하고자 한다. 학습곡선모형 중 가장 일반적인 지수감소모형(Exponential decay model)을 사용하여 시간에 따라 고객 불만(VOC)이 감소하는지를 검증하였다. 그리고 통신사들의 서비스 상품의 인력투입, 소프트웨어 적용, 투자 등의 노력에 따른 고객 불만(VOC) 변화효과를 추가로 검증하였다. 서비스 상품별 실증 분석의 결과는 다음과 같다. 첫째, 학습곡선대로 시간에 따라 고객 불만(VOC)이 감소하였다. 둘째, 초고속 인터넷, 전화, IPTV 등은 인력투입, Network 장애, 계절요인으로 인해 고객 불만(VOC)을 증가 시키거나 감소 시켰다. 셋째, 서비스 상품별 다양한 변수는 고객의 체감 품질을 높이고 있지만, 오히려 지속적으로 감소하지 않는 서비스 패러독스(Service Paradox)현상이 발생하는 것을 알 수 있었다.

기계학습에 의한 후두 장애음성 식별기의 성능 비교 (Performance comparison on vocal cords disordered voice discrimination via machine learning methods)

  • 조철우;왕수건;권익환
    • 말소리와 음성과학
    • /
    • 제14권4호
    • /
    • pp.35-43
    • /
    • 2022
  • 본 논문은 후두 장애음성 데이터의 식별률을 CNN과 기계학습 앙상블 학습 방법에 의해 개선하는 방법에 대한 연구이다. 일반적으로 후두 장애음성 데이터는 그 수가 적으므로 통계적 방법에 의해 식별기가 구성되더라도, 훈련 방식에 따라 과적합으로 인해 일어나는 현상으로 인해 외부 데이터에 노출될 시 식별률의 저하가 발생할 수 있다. 본 연구에서는 다양한 정확도를 갖도록 훈련된 CNN 모델과 기계학습 모델로부터 도출된 결과를 다중 투표 방식으로 결합하여 원래의 훈련된 모델에 비해 향상된 분류 효율을 갖도록 하는 방법과 함께, 기존의 기계학습 중 앙상블 방법을 적용해 보고 그 결과를 확인하였다. 알고리즘을 훈련하고 검증하기 위해 PNUH(Pusan National University Hospital) 데이터셋을 이용하였다. 데이터셋에는 정상음성과 양성종양 및 악성 종양의 음성 데이터가 포함되어 있다. 실험에서는 정상 및 양성 종양과 악성종양을 구분하는 시도를 하였다. 실험결과 random forest 방법이 가장 우수한 앙상블 방법으로 나타났으며 85%의 식별률을 보였다.

A Study on Stable Motion Control of Humanoid Robot with 24 Joints Based on Voice Command

  • Lee, Woo-Song;Kim, Min-Seong;Bae, Ho-Young;Jung, Yang-Keun;Jung, Young-Hwa;Shin, Gi-Soo;Park, In-Man;Han, Sung-Hyun
    • 한국산업융합학회 논문집
    • /
    • 제21권1호
    • /
    • pp.17-27
    • /
    • 2018
  • We propose a new approach to control a biped robot motion based on iterative learning of voice command for the implementation of smart factory. The real-time processing of speech signal is very important for high-speed and precise automatic voice recognition technology. Recently, voice recognition is being used for intelligent robot control, artificial life, wireless communication and IoT application. In order to extract valuable information from the speech signal, make decisions on the process, and obtain results, the data needs to be manipulated and analyzed. Basic method used for extracting the features of the voice signal is to find the Mel frequency cepstral coefficients. Mel-frequency cepstral coefficients are the coefficients that collectively represent the short-term power spectrum of a sound, based on a linear cosine transform of a log power spectrum on a nonlinear mel scale of frequency. The reliability of voice command to control of the biped robot's motion is illustrated by computer simulation and experiment for biped walking robot with 24 joint.

모바일 환경에서 효과적인 사용자 인터페이스를 이용한 LMS에 관한 연구 (A Study on LMS Using Effective User Interface in Mobile Environment)

  • 김시정;조도은
    • 한국항행학회논문지
    • /
    • 제16권1호
    • /
    • pp.76-81
    • /
    • 2012
  • 다양한 모바일 기기의 보급 확산으로 u러닝 기반의 학습 관리 시스템의 연구가 활발히 진행 되고 있다. u-러닝 기반의 학습 관리 시스템은 콘텐츠 사용자의 접근 시간과 장소 그리고 다양한 접근 기기에 대한 제약이 없다는 점에서 매우 편리하다. 그러나 사용자에 대한 접근의 인증과 학습에 대한 집중 여부에 대한 판단이 매우 어렵다. 본 논문은 일반적인 사용자 이벤트 중심의 인터페이스가 아닌 음성과 사용자 안면 캡춰 인터페이스를 학습 관리 시스템에 적용 하였다. 사용자가 학습 관리 시스템에 접근 시 등록된 본인의 패스워드를 음성 입력하여 로그인 하고, 사용자가 콘텐츠를 통해 학습이 진행 되는 과정에서도 간단한 단어의 응답 발화를 통해 사용자의 학습 태도 및 학습 성과를 판단하게 한다. 제안된 학습 관리 시스템의 평가 결과 사용자의 학습 성취도와 집중도가 향상 되었으며 이에 따른 사용자의 비정상적인 학습태도에 대한 관리자의 모니터링을 가능 하게 했다.

CNN을 이용한 음성 데이터 성별 및 연령 분류 기술 연구 (A Study on the Gender and Age Classification of Speech Data Using CNN)

  • 박대서;방준일;김화종;고영준
    • 한국정보기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.11-21
    • /
    • 2018
  • 본 논문에서는 사람을 대신하여 분류, 예측 하는 딥러닝 기술을 활용하여 목소리를 통해 남녀노소를 분류하는 연구를 수행한다. 연구과정은 기존 신경망 기반의 사운드 분류 연구를 살펴보고 목소리 분류를 위한 개선된 신경망을 제안한다. 기존 연구에서는 도시 데이터를 이용해 사운드를 분류하는 연구를 진행하였으나, 얕은 신경망으로 인한 성능 저하가 나타났으며 다른 소리 데이터에 대해서도 좋은 성능을 보이지 못했다. 이에 본 논문에서는 목소리 데이터를 전처리하여 특징값을 추출한 뒤 추출된 특징값을 기존 사운드 분류 신경망과 제안하는 신경망에 입력하여 목소리를 분류하고 두 신경망의 분류 성능을 비교 평가한다. 본 논문의 신경망은 망을 더 깊고 넓게 구성함으로써 보다 개선된 딥러닝 학습이 이루어지도록 하였다. 성능 결과로는 기존 연구와 본 연구의 신경망에서 각각 84.8%, 91.4%로 제안하는 신경망에서 약 6% 더 높은 정확도를 보였다.

효과적인 인간-로봇 상호작용을 위한 딥러닝 기반 로봇 비전 자연어 설명문 생성 및 발화 기술 (Robot Vision to Audio Description Based on Deep Learning for Effective Human-Robot Interaction)

  • 박동건;강경민;배진우;한지형
    • 로봇학회논문지
    • /
    • 제14권1호
    • /
    • pp.22-30
    • /
    • 2019
  • For effective human-robot interaction, robots need to understand the current situation context well, but also the robots need to transfer its understanding to the human participant in efficient way. The most convenient way to deliver robot's understanding to the human participant is that the robot expresses its understanding using voice and natural language. Recently, the artificial intelligence for video understanding and natural language process has been developed very rapidly especially based on deep learning. Thus, this paper proposes robot vision to audio description method using deep learning. The applied deep learning model is a pipeline of two deep learning models for generating natural language sentence from robot vision and generating voice from the generated natural language sentence. Also, we conduct the real robot experiment to show the effectiveness of our method in human-robot interaction.

Personal Credit Evaluation System through Telephone Voice Analysis: By Support Vector Machine

  • 박형우
    • 인터넷정보학회논문지
    • /
    • 제19권6호
    • /
    • pp.63-72
    • /
    • 2018
  • 인간의 목소리는 사람간의 정보 전달을 위한 가장 쉬운 방법 중 하나이다. 음성의 특징은 사람마다 다를 수 있으며 발성 속도, 발성기관의 형태와 기능, 피치 톤, 언어 습관 및 성별에 따라 다르게 나타난다. 목소리는 사람의 의사소통 핵심 요소이다. 제 4 차 산업 혁명의 시대에 목소리는 사람과 사람, 사람과 기계, 기계 와 기계 사이의 주요한 의사소통 수단이 된다. 그 이유 때문에 사람들은 자신의 의도를 다른 사람들에게 명확하게 전달하려고 노력한다. 그리고 이 과정에서 목소리는 언어 정보와 함께 다양한 추가 정보가 포함되게 된다. 예를 들어 감정 상태, 건강 상태, 신뢰도와 관련되거나, 거짓말의 여부, 음주로 인한 목소리의 변화 등 다양한 언어 및 비언어 정보를 포함하며, 다양한 분석 파라미터로 나타나게 된다. 이를 활용하면 개인의 신용도를 평가하는 척도로 사용할 수 있다. 특히 성대의 기본 주파수의 특성과 성도의 공진 주파수 특성의 관계를 분석함으로써 얻을 수 있다. 이전의 연구에서 다양한 신용 상태의 변화에 따른 목소리 분석 및 특성 변화를 연구 하였다. 본 연구에서는 음성을 통해 추출 된 매개 변수를 통해 기계 학습을 통한 개인 신용 판별 기를 제안한다.